




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1数系的扩充和复数的概念,3.1.2复数的几何意义,知识回顾,1.复数的代数形式:,通常用字母z表示,即,其中称为虚数单位。,2.复数的分类:,非纯虚数,纯虚数,虚数,实数,3.规定:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,注:,2)一般来说,两个复数只能说相等或不相等,而不能比较大小了.,你能否找到用来表示复数的几何模型呢?,x,o,1,实数可以用数轴上的点来表示。,一一对应,规定了正方向,,直线,数轴,原点,,单位长度,实数,数轴上的点,(形),(数),(几何模型),知识引入,一个复数由什么唯一确定?,Z=a+bi(a,bR),实部!,虚部!,复数z=a+bi,有序实数对(a,b),直角坐标系中的点Z(a,b),(数),(形),一一对应,讲解新课,建立了平面直角坐标系来表示复数的平面-复平面其中:x轴-实轴y轴-虚轴,x,y,o,b,a,Z(a,b),z=a+bi,由于向量由点Z唯一确定,所以复数的第二个几何意义是:,复数z=a+bi,平面向量,复数z=a+bi,直角坐标系中的点Z(a,b),平面向量,(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。,例1.辨析:,下列命题中的假命题是(),D,例2已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。,表示复数的点所在象限的问题,复数的实部与虚部所满足的不等式组的问题,转化,(几何问题),(代数问题),一种重要的数学思想:数形结合思想,变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值。,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2。,例2已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。,变式二:证明对一切m,此复数所对应的点不可能位于第四象限。,不等式解集为空集,所以复数所对应的点不可能位于第四象限.,实数绝对值的几何意义,能否把实数绝对值概念推广到复数范围呢?,实数a在数轴上所对应的点A到原点O的距离。,复数绝对值的几何意义,复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离。,例3求下列复数的模:(1)z1=-5i(2)z2=-3+4i(3)z3=5-5i,(3)满足|z|=5(zC)的z值有几个?,思考:,(2)满足|z|=5(zR)的z值有几个?,(4)z4=1+mi(mR)(5)z5=4a-3ai(a0),(1)复数的模能否比较大小?,这些复数对应的点在复平面上构成怎样的图形?,x,y,O,设z=x+yi(x,yR),满足|z|=5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,小结:,复数的几何意义是什么?,课堂小结:,一.数学知识:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行测国考答案及题库及完整答案详解1套
- 西藏农牧学院期末考试卷及答案
- 国考题库综合及参考答案详解(能力提升)
- 生成式人工智能技术的伦理治理研究
- 2025第三人民医院透析急性反应处理考核
- 基于代价函数消除与多矢量优化的共母线型开绕组永磁同步电机模型预测转矩控制策略研究
- 鄂尔多斯市人民医院器官功能衰竭预警考核
- 2025中医院增强现实导航技术考核
- 邯郸市中医院肌电图室管理考核
- 冻融循环作用下泡沫混凝土动态力学特性及损伤机理研究
- 心灵树洞中小学生心理健康主题班会PPT教学课件
- 低血糖症-课件
- 木质纤维素的生物分解及其转化技术
- 海康威视磁盘阵列使用说明精.选
- GB/T 7387-1999船用参比电极技术条件
- GB/T 39473-2020北斗卫星导航系统公开服务性能规范
- GB 16808-2008可燃气体报警控制器
- 公司有限空间作业安全专项排查表
- 强度调制机理光纤传感器基本原理课件
- 《当代中国经济》第一章中国经济体制改革
- 《自强不息的人格修养》-课件1
评论
0/150
提交评论