九年级数学上册21.1二次根式教学课件(新版)华东师大版.ppt_第1页
九年级数学上册21.1二次根式教学课件(新版)华东师大版.ppt_第2页
九年级数学上册21.1二次根式教学课件(新版)华东师大版.ppt_第3页
九年级数学上册21.1二次根式教学课件(新版)华东师大版.ppt_第4页
九年级数学上册21.1二次根式教学课件(新版)华东师大版.ppt_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第21章二次根式,导入新课,讲授新课,当堂练习,课堂小结,21.1二次根式,学习目标,1.理解二次根式的概念;,2.会确定二次根式有意义时字母的取值范围;(重点),3.探索二次根式的性质;(难点),4.运用二次根式的性质进行化简计算.(难点),问题2什么是一个数的算术平方根?如何表示?,正数的正的平方根叫做它的算术平方根.,问题1什么叫做一个数的平方根?如何表示?,一般地,若一个数的平方等于a,则这个数就叫做a的平方根.,0的算术平方根是0.,a的平方根是.,用(a0)表示.,观察与思考,导入新课,正数有两个平方根且互为相反数;0有一个平方根就是0;负数没有平方根.,问题3平方根的性质:,问题4所有实数都有算术平方根吗?,正数和0都有算术平方根;负数没有算术平方根.,下球体,S,圆形的下球体在平面图上的面积为S,则半径为_.,如图所示的值表示正方形的面积,则,正方形的边长是.,b-3,表示一些正数的算术平方根,你认为下列各代数式有哪些共同特点?,讲授新课,二次根式的定义,2.二次根式实质上是非负数的算术平方根.,3.a既可以是一个数,也可以是一个式子.,1.既可表示开方运算,也可表示运算的结果.,知识归纳,请你凭着自己已有的知识,说说对二次根式的认识!,例下列各式是二次根式吗?,(m0),(x,y异号),解析:,(1)、(4)、(6)均是二次根式,其中+1属于“非负数+正数”的形式一定大于零.而(5)中xy0,(7)根指数不是2,是3.而(3)不是,是因为在实数范围内,负数没有平方根.,典例精析,4,2,0,1.根据算术平方根的意义填空,并说出得到结论的依据,一般地,有,归纳,由其定义我们还可进一步知道:二次根式具有双重非负性.到目前为止,非负数的三种表现形式归纳如下:a2,a,文字叙述:任何一个非负数算术平方根的平方都等于这个数.,计算,解:,(2)用到了(ab)2=a2b2这个结论.,类似地,计算:,再计算:,0.5,0,0.5,一般地,有,a,-a,(a0),(a0),2.从取值范围来看,a0,a取任何实数,1.从运算顺序来看,先开方,后平方,先平方,后开方,3.从运算结果来看:,=a,a(a0),-a(a0),=,=a,知识要点,化简,解:,解:由x-10,得,x1,1.当x取何值时,二次根式有意义?,当x1时,在实数范围内有意义.,试求当x=5时,二次根式的值.,当x=5时,,思考:当x是怎样的实数时,在实数范围内有意义?,x为全体实数.,当堂练习,2.(1)若,则a-b+c=_;,解:,(1)由题意可知a-2=0,b-3=0,c-4=0,解得a=2,b=3,c=4.,所以a-b+c=2-3+4=3.,(2)由题意知1-x0,且x-10,联立解得x=1.从而知y=2015,所以x+2y=1+22015=4031.,(1)二次根式的概念(2)根号内字母的取值范围(3)二次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论