高考数学考点08 对数与对数函数_第1页
高考数学考点08 对数与对数函数_第2页
高考数学考点08 对数与对数函数_第3页
高考数学考点08 对数与对数函数_第4页
高考数学考点08 对数与对数函数_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点08 对数与对数函数考纲原文(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数与对数函数互为反函数.知识整合一、对数与对数运算1对数的概念(1)对数:一般地,如果,那么数 x叫做以a为底 N的对数,记作,其中a叫做对数的底数,N叫做真数.(2)牢记两个重要对数:常用对数,以10为底的对数lgN;自然对数,以无理数e=2.71828为底数的对数lnN.(3)对数式与指数式的互化:.2对数的性质根据对数的概念,知对数具有以下性质:(1)负数和零没有对数,即;(2)1的对数等于0,即;(3)底数的对数等于1,即;(4)对数恒等式.3对数的运算性质如果,那么:(1);(2);(3).4对数的换底公式对数的换底公式:.换底公式将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e为底的自然对数.换底公式的变形及推广:(1);(2);(3)(其中a,b,c均大于0且不等于1,d0).二、对数函数及其性质1对数函数的概念一般地,我们把函数叫做对数函数,其中x是自变量,函数的定义域是.2对数函数的图象和性质一般地,对数函数的图象与性质如下表所示:图象定义域值域性质过定点,即时,在上是减函数在上是增函数当x1时,y0;当0x1时,y0当x1时,y0;当0x1时,y0在直线的右侧,当时,底数越大,图象越靠近x轴;当时,底数越小,图象越靠近x轴,即“底大图低”3对数函数与指数函数的关系指数函数且)与对数函数且)互为反函数,其图象关于直线对称.重点考向考向一 对数式的化简与求值对数运算的一般思路:(1)对于指数式、对数式混合型条件的化简与求值问题,一般可利用指数与对数的关系,将所给条件统一为对数式或指数式,再根据有关运算性质求解;(2)在对数运算中,可先利用幂的运算性质把底数或真数变形,化成分数指数幂的形式,使幂的底数最简,然后运用对数的运算性质、换底公式,将对数式化为同底数对数的和、差、倍数运算.注意:(1)在利用对数的运算性质与进行化简与求值时,要特别注意题目的前提条件,保证转化关系的等价性(2)注意利用等式.典例引领典例1 化简:();()【答案】(1)5;(2)3.【解析】()()【名师点睛】本题主要考查了对数的运算,其中熟记对数的运算法则和对数的运算性质是解答的关键,着重考查了推理与运算能力.典例2 已知函数,若,则A B C D【答案】D【解析】根据题意有,解得,故选D【名师点睛】该题考查的是已知函数值求自变量的问题,在求解的过程中,需要对指数式和对数式的运算性质了如指掌.首先将自变量代入函数解析式,利用指对式的运算性质,得到关于参数的等量关系式,即可求得结果.变式拓展1设为正数,且,当时,的值为A B C D考向二 对数函数的图象1对数函数的图象过定点(1,0),所以讨论与对数函数有关的函数的图象过定点的问题,只需令真数为1,解出相应的,即可得到定点的坐标.2当底数时,对数函数是上的增函数,当时,底数的值越小,函数图象越“陡”,其函数值增长得越快;当底数时,对数函数是上的减函数,当时,底数的值越大,函数图象越“陡”,其函数值减小得越快.也可作直线y=1与所给图象相交,交点的横坐标即为各个底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可比较底数的大小3对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解特别地,要注意底数和的两种不同情况有些复杂的问题,借助于函数图象来解决,就变得简单了,这是数形结合思想的重要体现4一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.典例引领典例3 若函数的图象如图所示,则下列函数图象正确的是【答案】B典例4 已知函数,且函数有且只有一个零点,则实数a的取值范围是A1,) B(1,)C(,1) D(,1【答案】B【解析】如图所示,在同一平面直角坐标系中分别作出与的图象,其中a表示直线在y轴上的截距,由图可知,当时,直线与只有一个交点故选B变式拓展2在同一直角坐标系中,函数,(,且)的图象大致为 A BC D 考向三 对数函数性质的应用对数函数的性质及其应用是每年高考的必考内容之一,多以选择题或填空题的形式呈现,难度易、中、难都有,且主要有以下几种命题角度:(1)比较对数式的大小:若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论;若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较;若底数与真数都不同,则常借助1,0等中间量进行比较(2)解对数不等式:形如的不等式,借助的单调性求解,如果a的取值不确定,需分与两种情况讨论;形如的不等式,需先将b化为以a为底的对数式的形式,再借助的单调性求解典例引领典例5 已知,则A BC D【答案】C【解析】因为,所以,故选C【名师点睛】本题中既有指数式,又有对数式,无法直接比较大小,可借助中间量1,0来进行比较.典例6 求不等式的解集.变式拓展3设函数是定义在上的奇函数,且当时,记,则的大小关系为A B C D考向四 对数函数的复合函数问题与对数函数相关的复合函数问题,即定义域、值域的求解,单调性的判断和应用,与二次函数的复合问题等,解题方法同指数函数类似.研究其他相关函数的单调性、奇偶性一般根据定义求解,此外,需特别注意对数函数的定义域及底数的取值.求形如的复合函数的单调区间,其一般步骤为:求定义域,即满足的x的取值集合;将复合函数分解成基本初等函数及;分别确定这两个函数的单调区间;若这两个函数同增或同减,则为增函数,若一增一减,则为减函数,即“同增异减”.典例引领典例7 已知函数(1)判断的奇偶性并加以证明;(2)判断的单调性(不需要证明);(3)解关于m的不等式【答案】(1)偶函数,证明见解析;(2)减函数;(3).【解析】(1)由,得,函数的定义域为 函数的定义域关于原点对称,且,函数为偶函数 (2), 为增函数,在上是增函数,在上是减函数,在上是增函数,在上是减函数.(3)即, 则,得.关于m的不等式的解集为.变式拓展4已知函数是对数函数.(1)若函数,讨论的单调性; (2)在(1)的条件下,若,不等式的解集非空,求实数的取值范围.考点冲关1计算等于A B C D2已知“”,:“”,则是的A充要条件 B充分不必要条件C必要不充分条件 D既不充分也不必要条件3函数的单调递减区间为A B C D4已知函数,则使得f(2x)f(x+3)成立的x的取值范围是A BC D5已知,函数在同一坐标系中的图象可能是A B C D6已知,则的大小关系为A B C D7奇函数满足,当时,则A2 B C D28已知函数是定义在上的奇函数,且在区间上单调递增,若实数满足,则的取值范围是A B C D9方程的解为_10已知函数,设正实数满足,且,若在区间上的最大值为2,则=_11设函数,且.(1)求实数的值及函数的定义域;(2)求函数在区间上的最小值.12已知函数的图象过点.(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.直通高考1(2018年高考天津卷理科)已知,则a,b,c的大小关系为A B C D2(2018年高考新课标卷理科)设,则A B C D3(2017年高考北京卷理科)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg30.48)A1033 B1053C1073 D10934(2017年高考新课标全国卷理科)设x、y、z为正数,且,则A2x3y5z B5z2x3yC3y5z2x D3y2x5z5(2016年高考新课标全国卷理科)若,则A B C D6(2015年高考北京卷理科)如图,函数的图象为折线,则不等式的解集是A BC D7(2015年高考湖南卷理科)设函数,则是A奇函数,且在上是增函数 B奇函数,且在上是减函数C偶函数,且在上是增函数 D偶函数,且在上是减函数8(2018年高考江苏卷)函数的定义域为_参考答案变式拓展1【答案】C【解析】令,则,由得,故选C 3【答案】A【解析】x0时,在(0,+)上单调递增;是定义在R上的奇函数,=;,abc,即cba故选A【名师点睛】根据x0时的解析式即可知在(0,+)上单调递增,由为奇函数即可得出,然后比较的大小关系,根据在(0,+)上单调递增即可比较出a,b,c的大小关系利用指数函数、对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小4【答案】(1)见解析;(2).【解析】(1)由题意可知:,解得,函数的解析式为. , ,即的定义域为.由于,令,则由对称轴可知,在上单调递增,在上单调递减; 学! 又因为在上单调递增,故的单调递增区间为,单调递减区间为. (2)不等式的解集非空,所以,由(1)知,当时,函数的单调递增区间为,单调递减区间为,且,所以,所以,所以实数的取值范围为.【思路点拨】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,由(1)得到函数的单调性,求得函数的最小值,即可求得实数的取值范围.考点冲关1【答案】D【解析】由,故选D【名师点睛】本题主要考查了对数的运算求值,根据对数的运算公式,即可求解式子的数值其中熟记对数的运算公式是解答的关键,着重考查了推理与运算能力2【答案】B【解析】时,而时,即不一定成立,是的充分不必要条件,故选B【名师点睛】利用对数函数的单调性,根据充要条件的定义可得结果.判断充要条件时应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3【答案】C【解析】由可得,设,因为函数在上单调递减,单调递增,所以函数的单调递减区间为,故选C【名师点睛】求出函数的定义域,利用二次函数的单调性结合对数函数的单调性求解即可.本题主要考查对数函数的性质、复合函数的单调性,属于中档题.复合函数的单调性的判断可以综合考查两个函数的单调性,因此也是命题的热点,判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).4【答案】D【解析】因为,所以函数是偶函数,又易知在上单调递减,在上单调递增,所以,解得或.故选D 【名师点睛】本题考查函数的奇偶性和单调性的综合运用,先利用奇偶性的定义判断函数的奇偶性,再判断函数的单调性,将转化为进行求解.要注意:奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反.6【答案】D【解析】,且,故,故选D【名师点睛】本题考查对数函数的基本性质和运算公式,可以先比较同底的对数大小,再结合中间值1,进行比较即可.比较大小的试题通常先比较同底的然后借助中间值判断不同底的即可,属于基础题.7【答案】A【解析】,函数的周期为4.又,故选A【名师点睛】先由题意得到函数的周期为4,确定出的范围,然后根据函数的周期性和奇偶性求解本题考查函数的性质及指数、对数的运算,解题的关键是通过函数的周期性将求值问题转化到区间(0,1)内解决【名师点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性的关系得到是R上的增函数,再结合函数奇偶性和单调性的关系进行转化求解即可其中结合函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键9【答案】【解析】 或(舍去),即,解得即答案为2.10【答案】【解析】根据题意可知,并且可以知道函数在上是减函数,在上是增函数,且有,又,所以由题中的条件,可知,可以解得,所以,则有.【名师点睛】该题考查的是有关指数幂的运算,但是需要先从题的条件中来确定底数和指数的大小,首先需要确定函数的图象,之后借助于绝对值的意义,可以得到两个函数值的大小相等的时候,对应真数之间的关系:互为倒数,再结合两个值的大小关系,从而确定出对应各自的范围,根据题意,进一步确定其值的大小,最后求得结果.11【答案】(1),;(2)1.【解析】(1),.由得,函数的定义域为.【思路点拨】(1)根据题设,由,可求出参数的值,根据对数函数的定义,由且,解此不等式,从而求出函数的定义域;(2)由(1)可确定函数的解析式,经化简整理得,再根据函数的单调性可知该函数的最小值为.12【答案】(1),;(2);(3)存在使得函数的最大值为0.【解析】(1)因为函数的图象过点,所以,即,所以,所以,因为,所以,所以, 所以函数的值域为.(2)因为关于的方程有实根,即方程有实根,即函数的图象与函数的图象有交点,令,则函数的图象与直线有交点,又,任取,则,所以,所以,所以,所以,所以在R上是减函数(或由复合函数判断为单调递减函数也可),因为,所以,所以实数的取值范围是.(3)由题意知,令,则, 当时,所以,当时,所以(舍去),综上,存在使得函数的最大值为0.【思路点拨】(1)根据在图象上,代入计算即可求解,因为,所以,所以,可得函数的值域为;(2)原方程等价于的图象与直线有交点,先证明的单调性,可得到的值域,从而可得实数的取值范围;(3)根据,转化为二次函数的最大值问题,讨论函数的最大值,求解实数即可.直通高考1【答案】D【解析】由题意结合对数函数的性质可知:,据此可得:.本题选择D选项.【名师点睛】由题意结合对数函数的性质整理计算即可求得最终结果.对于对数的大小的比较,我们通常都是运用对数函数的单调性,但很多时候,因对数的底数或真数不相同,不能直接利用函数的单调性进行比较,这就必须掌握一些特殊方法在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论