幂的乘方与积的乘方(一)演示文稿.ppt_第1页
幂的乘方与积的乘方(一)演示文稿.ppt_第2页
幂的乘方与积的乘方(一)演示文稿.ppt_第3页
幂的乘方与积的乘方(一)演示文稿.ppt_第4页
幂的乘方与积的乘方(一)演示文稿.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第四节幂的乘方与积的乘方(一),北师大版七年级数学下册,第一章整式的运算,济南第二十七中学王伟,同底数幂乘法的运算性质:,aman,=am+n,推导过程,an,am+n,(m,n都是正整数),幂的意义:,=,知识回顾:,同底数幂相乘,底数不变,指数相加.,正方体的体积比与边长比的关系,乙正方体的棱长是2cm,则乙正方体的体积V乙=cm3,可以看出,V甲是V乙的倍,8,125,即53倍,边长比的,甲正方体的棱长是乙正方体的5倍,则甲正方体的体积V甲=cm3,1000,立方,正方体的体积之比=,探究:,球的体积比与半径比的关系,乙球的半径为3cm,则乙球的体积V乙=cm3.,则V甲是V乙的倍,即103倍,半径比的,立方,甲球的半径是乙球的10倍,则甲球的体积V甲=cm3.,1000,36,36000,球体的体积之比=,如果甲球的半径是乙球的n倍,那么甲球体积是乙球体积的倍,n3,探究:,103,106,体积扩大的倍数比半径扩大的倍数大得多.,研究新课,(102)3,=102102102,=102+2+2,=1023,=106,(根据).,(根据).,同底数幂的乘法,幂的意义,探究新知:,计算下列各式,并说明理由.(1)(62)4;(2)(a2)3;(3)(am)2;(4)(am)n.,解:(1)(62)4,(2)(a2)3,(3)(am)2,=62626262,=62+2+2+2,=68,=a2a2a2,=a2+2+2,=a6,=amam,=am+m,想一想:,(4)(am)n,=amamam,=amn,(幂的意义),(同底数幂的乘法性质),(乘法的意义),证明,=am+m+m,n,n,幂的乘方,底数,指数.,(am)n=amn(m,n都是正整数),不变,相乘,幂的乘方法则,【例1】计算:(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3y;(6)2(a2)6(a3)4.,(6)2(a2)6(a3)4,=1023,=106;,(1)(102)3,解:,(2)(b5)5,=b55,=b25;,(3)(an)3,=an3,=a3n;,(4)-(x2)m,=-x2m,=-x2m;,(5)(y2)3y,=y23y,=y6y,=2a26-a34,=2a12-a12,=a12.,=y7;,落实巩固,1.计算:(1)(103)3;(2)-(a2)5;(3)(x3)4x2;(4)(-x)23;(5)(-a)2(a2)2;(6)xx4x2x3.,2.判断下面计算是否正确?如果有错误请改正:(1)(x3)3=x6;(2)a6a4=a24.,联系拓广,a12(a3)()(a2)()a3a()()3()4,329m3(),y3n3,y9n.,(a2)m+1.,(a-b)32(b-a)(),联系拓广,(7)如果2a3,2b6,2c12,那么a,b,c的关系是.,(6)若48m16m29,则m.,课堂小结:,1.,同底数幂相乘,底数不变,指数相加.,幂的乘方,底数不变,指数相乘。,课后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论