




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题三 2020新型试题题型突破题型一定义新概念【例1】设是一个数集,且至少含有两个数,若对任意、,都有、, 、(除数),则称是一个数域.例如有理数集是数域;数集也是数域.有下列命题:整数集是数域;若有理数集,则数集必为数域;数域必为无限集;存在无穷多个数域.其中正确的命题的序号是 (把你认为正确的命题的序号填填上)【特别提醒】本题定义了新的概念:数域,审题非常关键,解题时可采用排除法,代入特殊的数值对选项进行排除筛选. 此题是以高等数学中“群、环、域”的知识考查高中数学中有关知识的问题,体现了高考数学与中学数学的和谐接轨,以高考数学知识为背景的问题,对已有的知识改造、重组创造“新知识”的问题,也成为高考试题的一大亮点.定义一个新概念,要求学生面对陌生情境,迅速提取有用信息,要善于挖掘概念的内涵与本质,并合理迁移运用已学的知识加以解决.这类问题较好地考查学生的转化能力、知识迁移能力以及学生探究性学习的潜能.题型二定义新图表根据以上排列规律,数阵中第()行的从左向右的第3个数是 【特别提醒】由数阵找到()行的最后一个数.数表其实是数列的一种分拆,不同的分拆方式就会产生不同的数表,本题中的数阵是对正整数数列的一种重排,只要找出其排列规律便不难求得答案,本题以三角形数表为载体,考查了学生观察、归纳、猜想的思维能力.源于杨辉三角的数表蕴含着丰富的性质,数表型试题在各地高考试卷中屡见不鲜.题型三定义新数列【例3】若数列满足(为正常数,),则称为“等方比数列”甲:数列是等方比数列;乙:数列是等比数列,则( )A甲是乙的充分条件但不是必要条件 B甲是乙的必要条件但不是充分条件C甲是乙的充要条件 D甲既不是乙的充分条件也不是乙的必要条件【解析】由等比数列的定义数列,若乙:是等比数列,公比为,即则甲命题成立;反之,若甲:数列是等方比数列,即即公比不一定为, 则命题乙不成立,故选B. 题型四 构建指数函数模式的问题【例4】有一个受到污染的湖泊,其湖水的容积为立方米,每天流出湖泊的水量都是立方米,现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合,用表示某一时刻每立方米湖水所含污染物质的克数,我们称为在时刻时的湖水污染质量分数,已知目前污染源以每天克的污染物质污染湖水,湖水污染质量分数满足关系式: (),其中是湖水污染的初始质量分数.()当湖水污染质量分数为常数时,求湖水污染的初始质量分数; ()求证:当时,湖泊的污染程度将越来越严重;()如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时污染水平的5%?故湖水污染质量分数随时间变化而增加,污染越来越严重.()污染停止即,设经过天能使湖水污染下降到初始污染水平5%,即,故需要天才能使湖水的污染水平下降到开始时污染水平的5%.题型五 构建二次函数模式的问题【例5】一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米 / 秒2的加速度匀加速开走,那么( )A人可在7米内追上汽车 B人可在10米内追上汽车C人追不上汽车,其间距离最近为5米 D人追不上汽车,其间距离最近为7米【例6】某工厂拟建一座平面图(如图9-3所示)为矩形且面积为的三级污水处理池,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).()写出总造价(元)与污水处理池长 ()的函数关系式; ()若由于地形限制,长、宽都不能超过,求的定义域; 图9-2-1()在条件()下,污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.【解析】()因污水处理水池的长为,则宽为,总造价为: ()由题设条件,解得,即函数定义域为()先研究函数在上的单调性,故函数在上是减函数,当时,取得最小值,此时 综上,当污水处理池的长为,宽为时,总造价最低,最低为45000元【特别提醒】 对勾函数是一种类似于反比例函数的一般函数.所谓的对勾函数,是形如的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习. 我们发现学习过的均值不等式实际就是对勾函数的参数a,b同号时的特例,等号成立时能取到最值;当不能取到等号时就要用对勾函数的单调性来求函数的最值. 若a,b异号: (1)a0,b0时,在定义域内是增函数,递增区间为(-,0)和(0,+), (2)a0,b0时,在定义域内是减函数,递减区间为(-,0)和(0,+). 通过研究我们可以知道高中阶段的对勾函数的参数主要是a,b同号,求最值的应用,所以我们要熟悉对勾函数的图像、性质和单调性.本题考查的是学生对于对勾函数单调性的理解,在区间上单调递减,在区间上单调递增,在上取得极小值,这一函数性质在不等式和导数中均有重要应用.学生可思考若不限制函数的定义域,此题的最优造价方案又将如何.题型七 知识类比问题【例7】设等差数列的前项和为,则,成等差数列.类比以上结论有:设等比数列的前项积为,则, , ,成等比数列.【特别提醒】根据类比猜想得出,成等比数列.本题考查由等差数列到等比数列的拓展推广,因为类比是数学发现的重要源泉,因此平时的教学与复习中更要注意类比等思想方法的学习.题型八 结论探索型问题例8 如图931,在直棱柱ABCDA1B1C1D1中()当A1CB1D1时,试确定底面四边形ABCD的形状;()如果底面ABCD是正方形,E是C1D1的中点,是否存在实数,当时,DECA1若存在,求出实数的范围;若不存在,说明理由【解析】()根据条件与结论分析,如果A1CB1D1,则BD一定垂直平面AA1C,只要满足条件ACBD,就能推出结论,因此对四边形ABCD的形状可以是正方形、菱形、筝形因此,而,可得,故不存在实数使得DECA1 【专题训练】1若,且AB,.()求零点个数;()当时,求的值域;()若时,求m的值.1解:()AB,2某工厂日生产某种产品最多不超过30件,且在生产过程中次品率与日产量 ()件间的关系为 每生产一件正品盈利2900元,每出现一件次品亏损1100元()将日利润(元)表示为日产量(件)的函数;()该厂的日产量为多少件时,日利润最大?()2解 :() ()当时,. 当时, 取得最大值33000(元). 当时,. 令,得.当时,;当时,.在区间上单调递增,在区间上单调递减. 故当时,取得最大值是 (元). , 当时,取得最大值(元).答: 该厂的日产量为25件时, 日利润最大. 3图5 图6 ()给出两块面积相同的正三角形纸片(如图5,图6),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图5、图6中,并作简要说明;()试比较你剪拼的正三棱锥与正三棱柱的体积的大小; 3解:()如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥如图2,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的,有一组对角为直角余下部分按虚线折起,可成为一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底()依上面剪拼的方法,有V柱V锥图1 图2 推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正三角形,其面积为现在计算它们的高:, ,所以,V柱V锥4已知为函数的一个极值点(1)求及函数的单调区间;(2)若对于任意恒成立,求取值范围5如图7,标系中,已知椭圆的离心率e,左右两个焦分别为. 过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=2() 求椭圆的方程;() 设椭圆的一个顶点为,是否存在直线:,使点B关于直线的对称点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教师招聘之《小学教师招聘》考前冲刺练习题含答案详解【能力提升】
- 押题宝典教师招聘之《小学教师招聘》题库及1套参考答案详解
- 教师招聘之《小学教师招聘》题型+答案(考点题)附答案详解(夺分金卷)
- 押题宝典教师招聘之《小学教师招聘》模考模拟试题含答案详解ab卷
- 演出经纪人之《演出经纪实务》考前冲刺分析附参考答案详解(综合卷)
- 押题宝典教师招聘之《小学教师招聘》题库及一套参考答案详解
- 2025年江苏银行招聘考试(英语)历年参考题库含答案详解
- 2025年丙类船长气象考试题库
- 2025年返贫监测测试题及答案解析
- 2025昆明卫生职业学院第三批云南省产业导师选聘工作(10人)笔试备考题库及答案解析
- 新药研究与开发技术 课件1.概论
- 索菲亚全屋定制合同协议
- 证件借用免责协议书范本
- 2025年人教版小学数学二年级上册学期教学计划
- 广东陆丰皮影戏在融合背景下的传承与创新发展研究
- 2025年高级粮油保管员技能鉴定理论考试题库-含答案
- 高一年级数学上册(人教版)《教材全解全析》1
- 2025年机场集团工作人员招聘考试笔试试题(含答案)
- 酒店从业人员禁毒知识宣讲
- 割草机知识培训课件图片
- 设备事故培训课件
评论
0/150
提交评论