



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.2函数的奇偶性一、学习目标1结合具体函数了解函数奇偶性的含义(难点)2会判断函数奇偶性的方法(重点、难点)3能运用函数图象理解和研究函数的奇偶性,了解函数奇偶性与图象的对称性之间的关系(易混点)二、问题导学(自学课本后,请解答下列问题)教材整理1偶函数阅读教材P33P34“观察”以上部分,完成下列问题偶函数条件对于函数f(x)的定义域内 ,都有 结论函数f(x)叫做偶函数图象特征偶函数的图象关于 对称,图象关于 对称的函数一定是偶函数.已知函数f(x)是定义在R上的偶函数,且当x0时,f(x)x22x.现已画出函数f(x)在y轴左侧的图象,如图134所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间图134教材整理2奇函数阅读教材P34“观察”至P35“例5”以上部分,完成下列问题奇函数条件对于函数f(x)的定义域内 ,都有 结论函数f(x)叫做奇函数图象特征奇函数的图象关于 对称,图象关于 对称的函数一定是奇函数.判断(正确的打“”,错误的打“”)(1)对于函数yf(x),若存在x,使f(x)f(x),则函数yf(x)一定是奇函数()(2)不存在既是奇函数,又是偶函数的函数()(3)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数()三、合作探究给出以下结论:f (x)|x1|x1|是奇函数;g(x)既不是奇函数也不是偶函数;F(x)f(x)f(x)(xR)是偶函数;h(x)既是奇函数,又是偶函数其中正确的序号是_变式1下列函数中,是偶函数的有_(填序号) (1)f(x)x3;(2)f(x)|x|1;(3)f(x);(4)f(x)x;(5)f(x)x2,x1,2(1)若函数f(x)为奇函数,则a()A. B. C. D1(2)已知f(x)x5ax3bx8且f(2)10,那么f(2)_.变式2若函数f(x)ax2bx3ab是偶函数,定义域为a1,2a,则a_,b_.函数f(x)在R上为奇函数,当x0时,f(x)1,求f(x)的解析式变式3已知yf(x)是定义在R上的奇函数,当x0时,f(x)x(x2),则当x0时,f(x)的表达式为()Af(x)x(x2) Bf(x)x(x2)Cf(x)x(x2) Df (x)x(x2)(1)定义在R上的偶函数f(x)满足:对任意的x1,x2(,0(x1x2),有(x2x1)f(x2)f(x1)0,则当nN*时,有()Af(n)f(n1)f(n1) Bf(n1)f(n)f(n1)Cf(n1)f(n)f(n1) Df(n1)f(n1)f(n)(2)已知yf(x)在定义域(1,1)上是减函数,其图象关于原点对称,且f(1a)f(12a)0,则a的取值范围是_变式4设偶函数f(x)的定义域为R,当x0,)时,f(x)是增函数,则f(2),f(),f(3)的大小关系是() Af()f(3)f(2)Bf()f(2)f(3)Cf()f(3)f(2)Df()f(2)f(3)四、当堂检测1下列函数是偶函数的是() Af(x)x Bf(x)2x232若函数f(x)ax2(2a)x1是偶函数,则函数f(x)的单调递增区间为()A(,0B0,)C(,) D1,)3 若奇函数f(x)在6,2上是减函数,且最小值是1,则它在2,6上是() A增函数且最小值是1B增函数且最大值是1C减函数且最大值是1D减函数且最小值是14如图135,已知偶函数f(x)的定义域为x|x0,且f(3)0,则不等式f(x)0的解集为_图1355设函数f(x)是定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医康复护理常规
- 自然环境描写课件
- 捉螃蟹美术课件
- 自学java面试题及答案
- 幼儿园小班美术教案小猪的新衣
- 肿瘤科评判性思维
- 警民关系面试题及答案
- 安全生产法培训
- 12345话务员沟通技巧培训
- javasocket面试题及答案
- 餐饮连锁企业品牌授权与经营管理协议
- 2025-2030年中国生物医学材料行业市场深度分析及发展前景与投资研究报告
- 北京市2024年高招本科普通批录取投档线
- DB32-T 5088-2025 废活性炭综合利用污染控制技术规范
- 2024-2025学年人教版数学八年级下册期末复习卷(含解析)
- 城市通信基站建设对周边居民影响风险评估报告
- 美容院洗涤协议书
- 学习解读《水利水电建设工程验收规程》SLT223-2025课件
- 2025-2030中国婚介网站行业发展趋势与投资战略研究报告
- 肥胖症诊疗指南(2024年版)解读
- 2025甘肃省农垦集团有限责任公司招聘生产技术人员145人笔试参考题库附带答案详解
评论
0/150
提交评论