




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.1向量在几何中的应用,第二章2.4向量的应用,学习目标1.经历用向量方法解决某些简单的几何问题及其它一些实际问题的过程.2.体会向量是一种处理几何问题的有力工具.3.培养运算能力、分析和解决实际问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一向量在平面几何中的应用,思考1,证明线段平行、点共线及相似问题,可用向量的哪些知识?,答案可用向量共线的相关知识:ababx1y2x2y10(b0).,设a(x1,y1),b(x2,y2),a,b的夹角为.,思考2,证明垂直问题,可用向量的哪些知识?,答案可用向量垂直的相关知识:abab0x1x2y1y20.,答案,思考3,用向量方法解决平面几何问题的“三步曲”是怎样的?,答案(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,距离,夹角等问题;(3)把运算结果“翻译”成几何关系.,答案,(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:ab(b0).(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,ab.(3)求夹角问题,往往利用向量的夹角公式:cos.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|.,梳理,x1y2x2y10,ab,ab0,x1x2y1y20,知识点二直线的方向向量和法向量,思考,若向量a(a1,a2)平行于直线l,则a1,a2与直线l的斜率k有何关系?,答案,答案设A(x1,y1)l,P(x,y)l,直线l的倾斜角为,斜率为k.向量a平行于l,由直线斜率和正切函数的定义,,如果知道直线的斜率k,则向量(a1,a2)一定与该直线.这时向量(a1,a2)称为这条直线的向量.如果表示向量的基线与一条直线垂直,则称这个向量垂直该直线.这个向量称为这条直线的向量.即直线ykxb的方向向量为,法向量为;直线AxByC0的方向向量为,法向量为.,梳理,平行,方向,法,(1,k),(k,1),(B,A),(A,B),题型探究,类型一用平面向量解决平面几何问题,例1已知在正方形ABCD中,E、F分别是CD、AD的中点,BE、CF交于点P.求证:(1)BECF;,证明,证明建立如图所示的平面直角坐标系,设AB2,则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1).,(2)APAB.,证明,x2(y1),即x2y2.,即APAB.,反思与感悟,用向量证明平面几何问题的两种基本思路(1)向量的线性运算法的四个步骤选取基底;用基底表示相关向量;利用向量的线性运算或数量积找出相应关系;把几何问题向量化.(2)向量的坐标运算法的四个步骤建立适当的平面直角坐标系;把相关向量坐标化;用向量的坐标运算找出相应关系;把几何问题向量化.,跟踪训练1如图,在正方形ABCD中,P为对角线AC上任一点,PEAB,PFBC,垂足分别为E,F,连接DP,EF,求证:DPEF.,证明,证明方法一设正方形ABCD的边长为1,AEa(0a1),,aa2a(1a)0.,方法二如图,以A为原点,AB,AD所在直线分别为x轴,y轴建立平面直角坐标系.,例2已知ABC的三个顶点A(0,4),B(4,0),C(6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;,类型二向量在解析几何中的应用,解由已知得点D(1,1),E(3,1),F(2,2),,(2)(x1)(2)(y1)0,即xy20为直线DE的方程.同理可求,直线EF,FD的方程分别为x5y80,xy0.,解答,(2)求AB边上的高线CH所在的直线方程.,解答,解设点N(x,y)是CH所在直线上任意一点,,4(x6)4(y2)0,即xy40为所求直线CH的方程.,反思与感悟,利用向量法解决解析几何问题,首先将线段看成向量,再把坐标利用向量法则进行运算.,解答,跟踪训练2在ABC中,A(4,1),B(7,5),C(4,7),求A的平分线所在的直线方程.,A的平分线的一个方向向量为,设P(x,y)是角平分线上的任意一点,,整理得7xy290.,当堂训练,2,3,4,1,1.已知在ABC中,若a,b,且ab0,则ABC的形状为A.钝角三角形B.直角三角形C.锐角三角形D.不能确定,答案,5,2.过点A(2,3),且垂直于向量a(2,1)的直线方程为A.2xy70B.2xy70C.x2y40D.x2y40,答案,解析,即(x2)2(y3)10,即2xy70.,2,3,4,1,5,答案,解析,A.平行四边形B.矩形C.等腰梯形D.菱形,即平行四边形ABCD的对角线垂直,平行四边形ABCD为菱形.,2,3,4,1,5,答案,解析,22,2,3,4,1,5,2,3,4,1,5,5.如图所示,在ABC中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若,则mn的值为_.,2,答案,解析,又M,O,N三点共线,,2,3,4,1,5,规律与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物业管理高级考试模拟试题及解析
- 2025年爆款流出酒店业必-备接待岗位招聘笔试试题解析
- 2025年猪肉储备库招聘考试必-备知识点
- 2025年初中心理健康特岗教师招聘考试高频考点预测
- 2025年财务会计经理应聘模拟题及答案详解大全
- 2025年初入行政领域行政助理面试实战模拟题及答案详解
- 2025年前端开发工程师面试必-备模拟题解析集
- 2025年医学影像学中级考试模拟题库及答案大全版
- 2025年物业管理专业知识中级面试预测题详解
- 布艺针织知识培训课件
- 托管老师岗前培训
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 220kV变电站一次系统设计毕业论文
- GB/T 3920-2008纺织品色牢度试验耐摩擦色牢度
- 松下panasonic-视觉说明书pv200培训
- 金风科技-风电产业集团-供应商现场作业基础安全考试附答案
- 中考语文二轮专题复习:议论文阅读(共27张PPT)
- 建设工地每日消杀记录表
- 建筑施工应急处置明白卡
- 环境污染刑事案件司法解释学习课件
- 信息技术教学德育融合
评论
0/150
提交评论