



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 立体几何体初步1.已知直线a , b和平面, 下面命题中正确的是 ( )A.若a/, b, 则a/b B.若a/, b/, 则a/b C.若a/b , b, 则a/ D.若a/b , a/, 则b/, 或b ABCPE 2.如图所示, 点P是平面ABC外一点, 且满足PA、PB、PC两两垂直, PEBC , 则该图中两两垂直的平面共有( ) A. 3对 B. 4对 C. 5对 D. 6对 3.一个正六棱锥的底面边长为a , 体积为a3, 那么侧棱与底面所成角为 ( )A. B. C. D. 4.如果圆锥底面半径为r , 轴截面为等腰直角三角形, 那么圆锥的全面积为 ( )A. r2 B. (+1)r2 C. (+1)r2 D. r25.两个平行平面的距离等于10, 夹在这两个平面间的线段AB长为20 , 则AB与这两个平面所成角是_ . 6.已知点P是ABC所在平面外一点, 过点P作PO平面ABC , 垂足为O , 连结PA、PB、PC. 若PA=PB=PC , 则O为ABC的_心;若PAPB, PBPC, PCPA , 则O是ABC的_心;若P点到三边AB、BC、CA的距离相等, 则O是ABC的_心. 7.(1)底面边长为2 , 高为1的正三棱锥的全面积为_ .(2)若球的体积与其表面积的2倍的数值相等, 则球的半径为_ .8.下列命题中:过直线外一点可作无数条直线与己知直线成 异面直线;如果一条直线不在平面内, 那么这条直线与这个平面平行;过直线外一点有无数个平面与这条直线平行;若, , 则/;若, , 则说法正确的是 ABCDMNP9.如图, 在四棱锥P-ABCD中, M、N是AB、PC的中点, 若ABCD是平行四边形, 求证: MN/平面PAD .10.在四棱锥P-ABCD中, 若PA平面ABCD, 且ABCD是正方形. (1)求证: 平面PAC平面PBD ; (2)若PA=AB=AD , 试求PC与平面ABCD所成角的正切值.11.如图, 四棱锥P-ABCD中, 侧面PDC是边长为2的正三角形且与底面ABCD垂直, ADC=60且ABCD为菱形. (1)求证: PACD ; (2)求异面直线PB和AD所成角的余弦值; (3)求二面角P-AD-C的正切值.ABCDP12.圆台的体积是234cm3, 侧面展开图是半圆环, 它的大半径等于小半径的3倍, 求这个圆台的底面半径.选修检测13. 以下四个命题:(1)圆上三点可确定一个平面;(2)圆心和圆上两点可确定一个平面;(3)四条平行线确定六个平面;(4)不共线的五点可确定一个平面,则必有三点共线.其中正确的是 ( ) A.(1) B.(1)(3) C.(1)(4) D.(1)(2)(4)14正三棱锥SABC的侧棱与底面边长相等,如果E,F分别是SC,AB的中点,那么异面直线EF与SA所成的角等于( ) A.90 B.45 C.60 D.3015.(94上海)在棱长为1的正方体ABCDABCD中,M、N分别为AB和BB的中点,那么AM和CN所成角的余弦值为 ( ) A. B. C. D.16一个二面角的两个半平面分别垂直与另一个二面角的两个半平面,则这两个二面角的位置关系是 ( ) A 相等 B. 互补 C. 相等或互补 D. 不能确定17过正方形ABCD的顶点A作线段AP平面ABCD,且AP=AB,则平面ABP与平面CDP所成的二面角的度数是18.已 知ABC中,Aa,BCa,BC=6,BAC=90,AB、AC与平面a分别成30、45的角则BC到平面a的距离为 19. RtABC的斜边在平面内,直角顶点C是外一点,AC、BC与所成角分别为30和45.则平面ABC与所成角为 . 20.在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,若EF=,则AD、BC所成的角为 . 21.圆锥的底面半径为5cm , 高为12cm , 当它的内接圆柱的底面半径为何值时, 圆锥的内接圆柱全面积有最大值; 最大值是多少?22.在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是ABC的垂心,求证:PH底面ABC ABC是锐角三角形. _A_B_C_P_E_H23在正方体AC1中,E为BC中点(1)求证:BD1平面C1DE;(2)在棱CC1上求一点P,使平面A1B1P平面C1DE;(3)求二面角BC1DE的余弦值.24(06江苏高考)在正中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1),将AEF沿EF折起到A1EF的位置,使二面角成直二面角,连结A1B、A1P(如图2)求证:平面BEP;求直线A1E与平面A1BP所成角的大小;BPCFEABA1EPFC图1图2求二面角的大小(用反三角函数值表示)。1D 2C 3B 4B 5 6外,垂,内,7, 89略证:连并延长交于连椐条件可证出以下易证10略解:()只要证:平面()易求得答案为11略解:()略证()()12设小圆环半径为x,则大圆环半径为x,所以扇环两弧长为所以圆台上,下底面半径为设圆台高为,则由得所以所以圆台上下底面半径分别为,13A 14B 15D 16D 17 18 19 2021设内接圆柱底面半径为r,高为x,则r/5=(12x)/12进而有x=1212r/5.所以rx2r2 =2.8r24r所以当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诊所电子设备管理制度
- 试剂耗材分级管理制度
- 财务结账流程管理制度
- 财富管理中心管理制度
- 货架仓库安全管理制度
- 货物验收流程管理制度
- 货运签收单据管理制度
- 应急通道协议书范本
- 服装代工合同协议书范本
- 劳务担保协议书范本
- 2024年司法局司法辅助岗招聘考试笔试试题(含答案)
- 2025年人力资源管理师考试试卷及答案
- 2025-2030中国空调行业发展分析及发展趋势预测与投资风险研究报告
- 北方华创招聘笔试题库2025
- 采购合同付款协议书
- 2025郑州航空工业管理学院辅导员考试试题及答案
- 浙江省嘉兴市2023-2024学年高一下学期6月期末考试英语试题(含答案)
- 多模态数据融合的智能告警机制-洞察阐释
- 2025江西上饶市国控投资集团限公司招聘中层管理6人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年广东省台山市事业单位公开招聘教师岗考试题带答案分析
- 2025-2030中国碲化镉(CdTe)行业市场发展趋势与前景展望战略研究报告
评论
0/150
提交评论