




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年春期四川省棠湖中学高一年级第一学月考试数学试题一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若集合,则的子集个数为A. 6 B. 7 C. 8 D. 9【答案】C【解析】由题意得,的子集个数为个选C2. 下列函数中,既是奇函数又是定义域内的增函数为A. B. C. D. 【答案】D【解析】选项A,B中,函数无奇偶性,故A不正确选项C中,函数为奇函数,但在定义域内不单调,故C不正确选项D中,函数为奇函数,且在定义域内为增函数,故D正确选D3. 若将函数的图象向左平移个单位长度,则平移后的图象的对称轴为A. B. C. D. 【答案】B【解析】函数的图像向左平移个单位长度得 所以 ,选B.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.4. 已知等差数列前9项的和为,则A. 100 B. 99 C. 98 D. 97【答案】C【解析】试题分析:,所以,选C.考点:等差数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.5. 的内角A、B、C的对边分别为已知,则A. B. C. 2 D. 3【答案】D【解析】在中,由余弦定理得,即,整理得,解得或(舍去),故选D6. 函数的零点所在的一个区间是A. B. C. D. 【答案】B【解析】,函数的零点在区间内。选B。7. 已知则A. B. C. D. 【答案】A. ,选A8. 若,则A. B. C. D. 【答案】D【解析】【分析】利用倍角公式对进行变形,再利用,把其转化成tana的形式,代入tana可求值。【详解】选D【点睛】(1)对于sin cos ,sin cos ,sin cos 这三个式子,已知其中一个式子的值,其余二式的值可求转化的公式为(sin cos )212sin cos ;(2)关于sin ,cos 的齐次式,往往化为关于tan 的式子后在求解其他问题9. 若函数,则(其中为自然对数的底数)=A. B. C. D. 【答案】B【解析】由题意得,选B 10. 若则A. B. C. D. 【答案】B【解析】, 选B11. 已知点O是内部一点,并且满足,的面积为,的面积为;则A. B. C. D. 【答案】A【解析】,设中点为,中点为,则,为的中位线,且,即选A点睛:解题的关键是确定点的位置,由题意得到后考虑到三角形中中线对应的向量的性质考虑到取中点为,中点为,得到后便可得到三点共线的结论,然后根据图形并结合三角形面积的求法得到结论12. 在中,角所对的边分别为,且满足,若点是外的一点,则四边形的面积的最大值为A. B. C. D. 【答案】A【解析】,整理得,又,故,为等边三角形如图,设,则由余弦定理得,四边形的面积 ,又,即时,有最大值1,此时有最大值选A二填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡上相应位置.13. _【答案】【解析】答案:14. 已知则_【答案】【解析】, 答案:点睛:(1)“给值求值”型问题的常用解法:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(2)常见的“变角”的技巧:, 等,解题时要做到灵活变形,以达到能应用所给条件的目的15. 在ABC中,A60,B45,则_【答案】【解析】在ABC中,由正弦定理得,即,解得答案:16. 已知函数的最大值为,最小值为;则=_【答案】6【解析】,令,则函数为奇函数,设的最大值和最小值分别为,则答案:点睛:本题用到了奇函数的性质,即奇函数的图象关于原点对称,由此可得结论:若奇函数在定义域内存在最大值,则必存在最小值,且最大值和最小值之和为零另外,解答本题时还要注意将所给的函数解析式进行适当的变形,将所给函数化为常数与一奇函数和的形式,从而达到容易解题的目的三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17. 已知.(1)若,求的坐标;(2)若与的夹角为,求.【答案】(1)或;(2)【解析】试题分析:(1)首先求出与共线的单位向量为,再由,可得的坐标;(2)根据平面向量的数量积求出模长即可试题解析:(1),与共线的单位向量为.,或.(2),.18. 若集合,集合(1)求;(2)若,求实数的取值范围【答案】(1);(2)【解析】【试题分析】()先依据题设条件求出集合,再借助数轴求出;()先求出集合C再借助数轴上集合的包含关系建立不等式组,求出的取值范围为:。解()由得解之得()由得解之得:解之得:即的取值范围为:19. 在中,已知是关于的方程的两个实根.(1)求; (2)若,求的面积.【答案】(1);(2)【解析】试题分析:(1)利用韦达定理,两角和的正切公式,求得 的值,可得 的值,从而求得的值(2)利用余弦定理及,可得的值,则的面积可求试题解析:(1)由得或,故,由题有,.又,. (2),由余弦定理可得.又,.20. 已知函数.(1)求函数的最小正周期及其图象的对称中心坐标;(2)求函数的单调增区间及在上的最大值和最小值.【答案】(1),;(2)【解析】试题分析:(1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性以及图象的对称性,求得函数的最小正周期及其图象的对称中心坐标;(2)利用正弦函数的单调性求得函数的增区间,再利用定义域和值域求得在上的最大值和最小值.试题解析:(1) 的最小正周期为由得:,解得:,的图象的对称中心坐标为()点睛:本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.21. ABC中,D是BC上的点,AD平分BAC,BD2DC.(1)求;(2)若BAC60,求B.【答案】(1);(2)【解析】试题分析:(1)在和中,分别使用正弦定理,又AD平分BAC,BD2DC,代入可求比值;(2)由,结合(1)有,代入的展开式,可求出B.试题解析:(1)由正弦定理,得,.因为AD平分BAC,BD2DC,所以.(2)因为C180(BACB),BAC60,所以sin Csin(BACB)cos Bsin B.由(1)知2sin Bsin C,所以tan B,所以B30.22. 已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性并证明;(3)若关于的不等式在有解,求实数的取值范围.【答案】(1)1;(2)【解析】试题分析:(1)由为奇函数可知,即可得解;(2)由递增可知在上为减函数,对于任意实数,不妨设,化简判断正负即可证得;(3)不等式,等价于,即,原问题转化为在上有解,求解的最大值即可.试题解析解:(1)由为奇函数可知,解得.(2)由递增可知在上为减函数,证明:对于任意实数,不妨设,递增,且,故在上为减函数.(3)关于的不等式,等价于,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中级健身教练专业资格认证考试模拟题及答案
- 2025年人力资源师考试模拟题及备考指南
- 2025年精密温控节能设备项目合作计划书
- 2025年脚踏自行车及其零件合作协议书
- 2025年智能计量终端项目建议书
- 2025年电容器用钽粉合作协议书
- 抛物线课件教学课件
- 2025年建筑材料及制品专用生产机械合作协议书
- 抗菌药物教学课件
- 2025年安徽省蚌埠市龙子湖区中考数学三模试卷(含答案)
- 一例CAG循证护理查房
- 安全生产投入台账(模板)
- 委托书办理压力容器使用登记证
- 关于房产权属的案外人执行异议申请书
- 举升机检查表
- 高中创作性戏剧课程设计
- 统计造假弄虚作假自查范文(通用5篇)
- (完整版)数字1到10的描红(田字格带笔画提示)
- 2023学年完整公开课版中国疆域
- 机械加工安全隐患排查表
- 12K101-3 离心通风机安装
评论
0/150
提交评论