常微分方程答案 一二章_第1页
常微分方程答案 一二章_第2页
常微分方程答案 一二章_第3页
常微分方程答案 一二章_第4页
常微分方程答案 一二章_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

习题1.24. 给定一阶微分方程,(1). 求出它的通解;(2). 求通过点的特解;(3). 求出与直线相切的解;(4). 求出满足条件的解;(5). 绘出(2),(3),(4)中的解得图形。解:(1). 通解显然为;(2). 把代入得,故通过点的特解为;(3). 因为所求直线与直线相切,所以只有唯一解,即只有唯一实根,从而,故与直线相切的解是;(4). 把代入即得,故满足条件的解是;(5). 图形如下:5. 求下列两个微分方程的公共解:解:由可得所以或,代入原微分方程满足,而代入原微分方程不满足,故所求公共解是代入原微分方程不满足。6. 求微分方程的直线积分曲线。解:设所求直线积分曲线是,则将其代入原微分方程可得所以所求直线积分曲线是或。8. 试建立分别具有下列性质的曲线所满足的微分方程: (2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长;(5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。解:因为过点的切线的横截距和纵截距分别为和,故(2). ;(5). 。习题2.11. 求下列方程的解:(2). ,并求满足初值条件的特解;解:当,分离变量,得两边同时积分,得又也是原方程的解,故的通解是由初值条件可得,故所求特解是。(4). 解:当,分离变量,得两边同时积分,得又也是原方程的解,故所求通解是 和 (5). 解:原方程可化为令,则两边同时积分,得将代入,得所求通解是(6). 解:原方程可化为令,则 当,分离变量,得两边同时积分,得又,即也是的解,故的通解是和。将代入,得原方程的通解是 和 (7). 解:当,分离变量,得两边同时积分,得又,即也是原方程的解,而该解可在中令得到,故所求通解是(8). 解:分离变量,得两边同时积分,得所求通解是 即 (9). 解:原方程可化为令,则 当,分离变量,得两边同时积分,得 由原方程可得,从而。又,即也是的解,而该解可在中令得到,故的通解是。将代入,得原方程的通解是(10). 解:分离变量,得两边同时积分,得所求通解是 2. 作适当的变量变换求解下列方程:(1). 解:令,则原方程化为两边同时积分,得将代入,得原方程的通解是 即 (3). 解:因为令,则原方程化为再令,得两边同时积分,得将代入,得原方程的通解是(7). 解:原方程可化为令,则原方程化为再令,得用分离变量法求解,得将代入,得原方程的通解是习题2.21. 求下列方程的解:(5). ;解:原方程可化为: 对应的齐次方程为,用变量分离法求得其解为。令的解为,则将其代入可得所以原方程的通解为(8). ;解:当时,原方程可化为: 这是未知函数为的非齐次线性方程,对应的齐次方程为,用变量分离法求得其解为。令的解为,则将其代入可得所以的通解为又也是原方程的解,故原方程的通解为 和 (12). ;解:原方程可化为: 这是的Bernoulli方程。当时,两边同时除以,得令,则 其对应的齐次方程的解为,令的解为,则将其代入可得所以的通解为将代入,得。又也是原方程的解,故原方程的通解为 和 (13). ;解:原方程可化为: 这是的Bernoulli方程,两边同时乘以,得令,则 其对应的齐次方程的解为,令的解为,则将其代入可得所以的通解为将代入,得原方程的通解为(16). ; 解:原方程两边同时对求导可得在原方程中,当时,。故原方程等价于Cauchy问题 由常数变易法易得的通解为,再由可得,故Cauchy问题的解为,这也是原方程的解。习题2.31. 验证下列方程是恰当方程,并求出方程的解:(2). ;解:因为,所以故原方程是恰当方程。令函数满足,则由可得再由可得所以,故原方程的通解是(2). ;解:因为,所以故原方程是恰当方程。令函数满足,则由可得再由可得所以,故原方程的通解是2. 求下列方程的解:(4). ;解:原方程两边同时除以,得所以原方程的通解是(6). ;解:因为,所以原方程不是恰当的。由可得积分因子,原方程两边同时乘以,得即所以故原方程的通解是(8). ;解:因为,所以原方程不是恰当的。由可得积分因子,原方程两边同时乘以,得即所以此即为原方程的通解。5. 试证齐次微分方程当时有积分因子。证明:齐次微分方程两边同时乘以得所以原方程可化为。因为原方程是齐次方程,故可设令,则又因为所以从而故是齐次微分方程当时的积分因子。习题2.41. 求解下列方程:(1). ;解:当时,原方程可化为令,则,两边对求导,得即又时,原方程恒不成立,所以原方程的参数形式的通解是(3). ;解:令,则,两边对求导,得所以或所以原方程的通解是 和 习题2.51. 求解下列方程:(3). ;解:原方程两边同时乘以,得令,则用常数变易法易得其解为,故原方程的通解为(11). ;解:原方程可化为由可得,这是一个恰当方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论