




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5等比数列的前n项和(1)学习目标1. 掌握等比数列的前n项和公式;2. 能用等比数列的前n项和公式解决实际问题.教学重点等比数列的前n项和公式推导教学难点灵活应用公式解决有关问题学习过程一、课前准备(预习教材P55 P56,找出疑惑之处)复习1:什么是数列前n项和?等差数列的数列前n项和公式是什么?复习2:已知等比数列中,求.二、新课导学 学习探究探究任务: 等比数列的前n项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n项和公式设等比数列它的前n项和是,公比为q0,公式的推导方法一:则 当时, 或 当q=1时, 公式的推导方法二:由等比数列的定义,有,即 . (结论同上)公式的推导方法三: . (结论同上)试试:求等比数列,的前8项的和. 典型例题例1已知a1=27,a9=,q0,求这个等比数列前5项的和.变式:,. 求此等比数列的前5项和.例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)? 动手试试练1. 等比数列中,练2. 一个球从100m高出处自由落下,每次着地后又弹回到原来高度的一半再落下,当它第10次着地时,共经过的路程是多少?(精确到1m)三、总结提升 学习小结1. 等比数列的前n项和公式;2. 等比数列的前n项和公式的推导方法;3. “知三求二”问题,即:已知等比数列之五个量中任意的三个,列方程组可以求出其余的两个. 知识拓展1. 若,则构成新的等比数列,公比为.2. 若三个数成等比数列,且已知积时,可设这三个数为. 若四个同符号的数成等比数列,可设这四个数为.3. 证明等比数列的方法有:(1)定义法:;(2)中项法:.4. 数列的前n项和构成一个新的数列,可用递推公式表示. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 数列1,的前n项和为( ).A. B. C. D. 以上都不对2. 等比数列中,已知,则( ). A. 30 B. 60 C. 80 D. 1603. 设是由正数组成的等比数列,公比为2,且,那么( ). A. B. C. 1 D. 4. 等比数列的各项都是正数,若,则它的前5项和为 .5. 等比数列的前n项和,则a . 课后作业 1. 等比数列中,已知2. 在等比数列中,求.2.5等比数列的前n项和(2)学习目标 1. 进一步熟练掌握等比数列的通项公式和前n项和公式;2. 会用公式解决有关等比数列的中知道三个数求另外两个数的一些简单问题.教学重点进一步熟练掌握等比数列的通项公式和前n项和公式教学难点灵活使用公式解决问题学习过程一、课前准备(预习教材P57 P62,找出疑惑之处)复习1:等比数列的前n项和公式.当时, 当q=1时, 复习2:等比数列的通项公式. = .二、新课导学 学习探究探究任务:等比数列的前n项和与通项关系问题:等比数列的前n项和, (n2), ,当n1时, .反思:等比数列前n项和与通项的关系是什么? 典型例题例1 数列的前n项和(a0,a1),试证明数列是等比数列.变式:已知数列的前n项和,且, ,设,求证:数列是等比数列.例2 等比数列前n项,前2n项,前3n项的和分别是,求证:,也成等比.变式:在等比数列中,已知,求. 动手试试练1. 等比数列中,求.练2. 求数列1,1+2,1+2+22,1+2+22+23,的前n项和Sn.三、总结提升 学习小结1. 等比数列的前n项和与通项关系;2. 等比数列前n项,前2n项,前3n项的和分别是,则数列,也成为等比数列. 知识拓展1. 等差数列中,;2. 等比数列中,. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列中,则( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,q2,使的最小n值是( ).A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)表示二进制的数, 将它转换成十进制的形式是,那么将二进制数(11111111)转换成十进制的形式是( ). A. B.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流年终总结工作报告
- 甲型流感后护理查房
- 脚手架专项施工安全方案
- 施工企业安全生产事故应急救援预案
- 公司级安全生产培训
- 线上教学工作总结
- 《苹果里的星星》课件
- 美术机构教务工作总结
- 了不起的轮子课件教学
- 静脉血栓栓塞的预防与护理
- 福建省长泰一中解析重点中学2024届学业水平考试数学试题模拟卷(十)
- 商场能源审计报告
- 老旧房改造工程合同范本
- 高层民用建筑钢结构技术规程
- 学术英语智慧树知到答案2024年南开大学
- 食堂家长开放日活动方案及流程
- 机电一体化职业技能大赛试题及答案
- 网络传播概论(第5版)课件 第三章 网络传播形式的流变
- 三级安全教育试题及答案(包含公司级、部门级、班组级)
- 【市质检】福州市2024-2025学年高三年级第一次质量检测 地理试卷(含答案)
- 四川蜀道铁路运营管理集团行测笔试题库
评论
0/150
提交评论