已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.5等比数列的前n项和(1)学习目标1. 掌握等比数列的前n项和公式;2. 能用等比数列的前n项和公式解决实际问题.教学重点等比数列的前n项和公式推导教学难点灵活应用公式解决有关问题学习过程一、课前准备(预习教材P55 P56,找出疑惑之处)复习1:什么是数列前n项和?等差数列的数列前n项和公式是什么?复习2:已知等比数列中,求.二、新课导学 学习探究探究任务: 等比数列的前n项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n项和公式设等比数列它的前n项和是,公比为q0,公式的推导方法一:则 当时, 或 当q=1时, 公式的推导方法二:由等比数列的定义,有,即 . (结论同上)公式的推导方法三: . (结论同上)试试:求等比数列,的前8项的和. 典型例题例1已知a1=27,a9=,q0,求这个等比数列前5项的和.变式:,. 求此等比数列的前5项和.例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)? 动手试试练1. 等比数列中,练2. 一个球从100m高出处自由落下,每次着地后又弹回到原来高度的一半再落下,当它第10次着地时,共经过的路程是多少?(精确到1m)三、总结提升 学习小结1. 等比数列的前n项和公式;2. 等比数列的前n项和公式的推导方法;3. “知三求二”问题,即:已知等比数列之五个量中任意的三个,列方程组可以求出其余的两个. 知识拓展1. 若,则构成新的等比数列,公比为.2. 若三个数成等比数列,且已知积时,可设这三个数为. 若四个同符号的数成等比数列,可设这四个数为.3. 证明等比数列的方法有:(1)定义法:;(2)中项法:.4. 数列的前n项和构成一个新的数列,可用递推公式表示. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 数列1,的前n项和为( ).A. B. C. D. 以上都不对2. 等比数列中,已知,则( ). A. 30 B. 60 C. 80 D. 1603. 设是由正数组成的等比数列,公比为2,且,那么( ). A. B. C. 1 D. 4. 等比数列的各项都是正数,若,则它的前5项和为 .5. 等比数列的前n项和,则a . 课后作业 1. 等比数列中,已知2. 在等比数列中,求.2.5等比数列的前n项和(2)学习目标 1. 进一步熟练掌握等比数列的通项公式和前n项和公式;2. 会用公式解决有关等比数列的中知道三个数求另外两个数的一些简单问题.教学重点进一步熟练掌握等比数列的通项公式和前n项和公式教学难点灵活使用公式解决问题学习过程一、课前准备(预习教材P57 P62,找出疑惑之处)复习1:等比数列的前n项和公式.当时, 当q=1时, 复习2:等比数列的通项公式. = .二、新课导学 学习探究探究任务:等比数列的前n项和与通项关系问题:等比数列的前n项和, (n2), ,当n1时, .反思:等比数列前n项和与通项的关系是什么? 典型例题例1 数列的前n项和(a0,a1),试证明数列是等比数列.变式:已知数列的前n项和,且, ,设,求证:数列是等比数列.例2 等比数列前n项,前2n项,前3n项的和分别是,求证:,也成等比.变式:在等比数列中,已知,求. 动手试试练1. 等比数列中,求.练2. 求数列1,1+2,1+2+22,1+2+22+23,的前n项和Sn.三、总结提升 学习小结1. 等比数列的前n项和与通项关系;2. 等比数列前n项,前2n项,前3n项的和分别是,则数列,也成为等比数列. 知识拓展1. 等差数列中,;2. 等比数列中,. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列中,则( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,q2,使的最小n值是( ).A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)表示二进制的数, 将它转换成十进制的形式是,那么将二进制数(11111111)转换成十进制的形式是( ). A. B.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国五矿招聘真题及答案
- 校园保安公司合同范本
- 楼层加装电梯协议书
- 新教师劳务合同范本
- 民间转让土地合同范本
- 柳州吊车租用合同范本
- 教师初步就业协议书
- 木纹漆施工合同范本
- 水库开发承包合同范本
- 施工合同备案实习协议
- 2025贵阳市城市建设投资集团有限公司第二批招聘笔试考试参考试题附答案解析
- 承装修安全生产管理制度
- 2025物流师考试试题及答案物流师考试真题及答案
- 2025-2026学年天一大联考高二物理第一学期期末质量跟踪监视模拟试题含解析
- 职业生涯规划计划书(34篇)
- 2025-2030中国眼视光行业现状态势与未来前景预测报告
- 新能源汽车技术职业生涯人物访谈报告
- 3分接变压器试验报告
- 《危险化学品目录(2022调整版)》
- 旋转机械振动故障诊断及分析课件
- 网约车资格证考试题库与答案
评论
0/150
提交评论