




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,圆,直线,直线,圆,8.1.2平面直角坐标系中的距离公式和中点公式,1,复习引入,一般地,如果A(x1),B(x2),则这两点的距离公式为,1.数轴上的距离公式,|AB|x2x1|,2.数轴上的中点公式,一般地,在数轴上,A(x1),B(x2)的中点坐标x满足关系式,x=,2,探究一,x,y,B,A,C,A1,A2,B2,B1,O,过A,B分别向x轴作垂线AA1,BB1,垂足分别为A1,B1;,如图所示设A(x1,y1),B(x2,y2),过A,B分别向y轴作垂线AA2,BB2,垂足分别为A2,B2;,其中直线BB1和AA2相交于点C,3,探究一,x,y,B,A,C,A1,A2,B2,B1,O,(2)|AC|与|A1B1|关系如何?如何求|A1B1|?,(1)以上四个垂足A1,B1,A2,B2的坐标分别是多少?,(5)你能表示出|AB|吗?,(3)|BC|等于多少?,(4)在直角三角形中,如何求|AB|?,如图所示设A(x1,y1),B(x2,y2),4,平面上两点间的距离公式,新授,设点A(x1,y1),B(x2,y2),则,5,因为x12,x22,y14,y23,,例1已知A(2,4),B(2,3),求|AB|,因此,所以dxx2x1224,dyy2y13(4)7,解:,新授,6,练习一,求两点之间的距离:(1)A(6,2),B(2,5);(2)C(2,4),D(7,2),7,探究三,x,y,B,A,A1,A2,B2,B1,O,过A,B,M分别向x轴作垂线AA1,BB1,MM1,垂足分别为A1,B1,M1;,如图所示设M(x,y)是A(x1,y1),B(x2,y2)的中点,过A,B,M分别向y轴作垂线AA2,BB2,MM2,垂足分别为A2,B2,M2,M,M1,M2,8,x,y,B,A,A1,A2,B2,B1,O,M,M1,M2,探究三,如图所示设M(x,y)是A(x1,y1),B(x2,y2)的中点,(4)你能写出点M的坐标吗?,(1)你能说出垂足A1,A2,B1,B2,M1,M2的坐标吗?,(2)点M是AB中点,M1是A1,B1的中点吗?它们的坐标有怎样的关系?,(3)M2是A2,B2的中点吗?它们的坐标有怎样的关系?,9,在坐标平面内,两点A(x1,y1),B(x2,y2)的中点M(x,y)的坐标之间满足:,新授,中点公式,10,例2求证:任意一点P(x,y)与点P(x,y)关于坐标原点成中心对称,新授,证明设P与P的对称中心为(x0,y0),则,所以坐标原点为P与P的对称中心,11,求下列各点关于坐标原点的对称点:A(2,3),B(3,5),C(2,4),D(3,5),练习二,12,例3已知坐标平面内的任意一点P(a,b),分别求它关于x轴的对称点P,关于y轴的对称点P的坐标,x,y,P(a,b),O,P,P,M,(1)如果点P与P关于x轴对称,PP与x轴垂直吗?P的横坐标是多少?,(2)PP与x轴的交点M是线段PP的中点吗?点M的纵坐标是多少?,(3)你能求出P的纵坐标吗?怎么求的?,(4)由以上分析,点P的坐标是多少?,(5)你能求出P的坐标吗?,新授,13,求下列各点关于x轴和y轴的对称点的坐标:A(2,3),B(3,5),C(2,4),D(3,5),练习三,14,例4已知平行四边形ABCD的三个顶点A(3,0),B(2,2),C(5,2),求顶点D的坐标,所以顶点D的坐标为(0,4),解:因为平行四边形的两条对角线的中点相同,所以它们的坐标也相同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共交通电梯购销及智能化改造合同
- 2025年度离婚协议范文子女抚养费用计算与支付
- 2025版光伏发电项目施工安装协议范本
- 2025年度创新亲情房产无偿赠与协议
- 2025版外墙面砖装饰分包合同
- 2025年度橱柜工程安装与智能家居系统集成协议
- 2025年度农产品质量安全第三方检测服务合同
- 2025版铁路货运集装箱物流信息化服务合同下载
- 2025版水泥行业研发与技术转移合作协议
- 2025年度绿色建筑示范项目保证金协议
- 大便失禁课件
- 高中数学竞赛平面几何中几个重要定理
- 中建测评2024二测题库及答案
- 精准施肥技术的优化与创新
- 肺结核的个案护理
- 乒乓球裁判培训课件
- 铁道概论(第八版)佟立本主编
- 真心痛的护理常规课件
- 乡村振兴项目规划建设与运营方案
- 驾驶员服务外包合同范本
- 实际控制人证明书
评论
0/150
提交评论