免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
- 数值分析实验报告 一、实验目的与要求1掌握高斯消去法的基本思路和迭代步骤;2培养编程与上机调试能力。二、实验内容1编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.(1) (2)2编写用列主元高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.(1) (2)三MATLAB计算源程序1. 用高斯消元法解线性方程组的MATLAB程序 输入的量:系数矩阵和常系数向量; 输出的量:系数矩阵和增广矩阵的秩RA,RB, 方程组中未知量的个数n和有关方程组解及其解的信息.function RA,RB,n,X=gaus(A,b)B=A b; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA;if zhica0,disp(请注意:因为RA=RB,所以此方程组无解.)returnendif RA=RB if RA=ndisp(请注意:因为RA=RB=n,所以此方程组有唯一解.) X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endend b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)/A(q,q); endelse disp(请注意:因为RA=RB0,disp(请注意:因为RA=RB,所以此方程组无解.)returnendif RA=RB if RA=ndisp(请注意:因为RA=RB=n,所以此方程组有唯一解.) X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1Y,j=max(abs(B(p:n,p); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endend b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)/A(q,q); endelse disp(请注意:因为RA=RBn,所以此方程组有无穷多解.)endend3 实验过程: 1(1)编写高斯消元法的MATLAB文件如下: clear; A=0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643; b=1.183;2.137;3.035; RA,RB,n,X =gaus (A,b) 运行结果为: 请注意:因为RA=RB=n,所以此方程组有唯一解. RA = 3 RB = 3 n = 3 X = -0.3982 0.0138 0.3351 (2)编写高斯消元法MATLAB文件如下: clear; A=5 2 1;2 8 -3;1 -3 -6; b=8;21;1; RA,RB,n,X =gaus (A,b) 运行结果为: 请注意:因为RA=RB=n,所以此方程组有唯一解. RA = 3 RB = 3 n = 3 X = 1 2 -1 在MATLAB中利用逆矩阵法检验结果: (1) 在command windows中直接运行命令: A=0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643; b=1.183;2.137;3.035;X=Ab 运行结果为: X = -0.3982 0.0138 0.3351 (2) 在command windows中直接运行命令: A=5 2 1;2 8 -3;1 -3 -6; b=8;21;1;X=Ab 运行结果为: X = 1 2 -1两小题所得结果相同,检验通过 2(1)编写列组高斯消元法MATLAB文件如下: clear; A=0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643; b=1.183;2.137;3.035; RA,RB,n,X =liezhu(A,b) 运行结果: 请注意:因为RA=RB=n,所以此方程组有唯一解. RA = 3 RB = 3 n = 3 X = -0.3982 0.0138 0.3351 (2)编写列组高斯消元法的MATLAB文件如下: clear; A=5 2 1;2 8 -3;1 -3 -6; b=8;21;1; RA,RB,n,X =liezhu(A,b) 运行结果为: 请注意:因为RA=RB=n,所以此方程组有唯一解. RA = 3 RB = 3 n = 3 X = 1 2 -1与题 1 中逆矩阵计算所得结果相同,检验通过 四.实验体会: 通过实验我掌握了消元法解方程的一些基本算法以及用matlab实现矩阵的几种基本计算。对MATLAB软件有了更深的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同的三方协议
- 代签租房协议合同
- 购无产权房合同范本
- 2025湖南怀化会同县民政社工站招聘备考题库含答案详解(夺分金卷)
- 中国农业发展银行2026年度校园招聘备考题库及答案详解(夺冠)
- 2025年拉萨分班考试题目及答案
- 2025辽宁朝阳喀喇沁左翼蒙古族自治县面向社会招聘社区专职工作者15人备考题库附答案详解(a卷)
- 特教教师面试题目及答案
- 武汉历史高三试卷及答案
- 2025重庆南岸区招聘社区工作者后备库人选300人备考题库附答案详解(黄金题型)
- 五年级下册《劳动技术》15、番茄炒鸡蛋课件
- 2024统编版七年级语文上册第四单元测试卷(原卷版+答案版)
- 2025年合肥兴泰金融控股(集团)有限公司招聘23人笔试参考题库附答案
- 肺癌科普宣传知识课件
- 2025新疆和田和康县、和安县面向社会招聘事业单位工作人员108人笔试考试参考试题及答案解析
- (2025年)河源市委社会工作部遴选公务员考试试题附答案
- 商业承兑转让协议书
- 2025考研心理学专业基础(312)真题答案
- 2025年低压电工证题库(详细版)
- 2025年计算机应用基础期末考试试题
- 破产管理人培训课件大纲
评论
0/150
提交评论