2020届高三数学(理)复习《离散型随机变量及其分布列》专题练_第1页
2020届高三数学(理)复习《离散型随机变量及其分布列》专题练_第2页
2020届高三数学(理)复习《离散型随机变量及其分布列》专题练_第3页
2020届高三数学(理)复习《离散型随机变量及其分布列》专题练_第4页
2020届高三数学(理)复习《离散型随机变量及其分布列》专题练_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

离散型随机变量及其分布列专题练专题1 离散型随机变量的分布列的性质1若离散型随机变量X的分布列如下,则常数c的值为 X01P9c2c38c2设随机变量X等可能取值1,2,3,n,如果P(X4)0.3,那么n_.3已知随机变量X的分布列为:P(Xk),k1,2,则P(2X4) 4离散型随机变量X的概率分布规律为P(Xn)(n1,2,3,4),其中a是常数,则P的值为 5袋子中装有大小相同的八个小球,其中白球五个,分别编号1、2、3、4、5;红球三个,分别编号1、2、3,现从袋子中任取三个小球,它们的最大编号为随机变量X,则P(X3)等于 6有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字和为X,则X8的概率是 7一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X4)的值为 8设随机变量X的分布列为Pak(k1,2,3,4,5)(1)求a;(2)求P;(3)求P.9随机变量X的分布列如下:X101Pabc其中a,b,c成等差数列,则P(|X|1)_.10设随机变量X的概率分布列为X1234Pm则P(|X3|1)_.11若P(Xx2)1,P(Xx1)1,其中x1x2,则P(x1Xx2)等于 专题2 离散型随机变量分布列的求法1口袋中有5只球,编号为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的分布列为_2在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数的分布列为_3设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1,则随机变量的分布列为_4一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列5长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:点击量0,1 000(1 000,3 000(3 000,)节数61812(1)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3 000的节数;(2)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间0,1 000内,则需要花费40分钟进行剪辑,若点击量在区间(1 000,3 000内,则需要花费20分钟进行剪辑,若点击量超过3 000,则不需要剪辑,现从(1)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列6已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或检测出3件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列7将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,表示球的编号与所放入盒子的编号正好相同的个数(1)求1号球恰好落入1号盒子的概率;(2)求的分布列82017年5月13日第30届大连国际马拉松赛举行,某单位的10名跑友报名参加了半程马拉松、10公里健身跑、迷你马拉松3个项目(每人只报一项),报名情况如下:项目半程马拉松10公里健身跑迷你马拉松人数235(其中:半程马拉松21.097 5公里,迷你马拉松4.2公里)(1)从10人中选出2人,求选出的两人赛程距离之差大于10公里的概率;(2)从10人中选出2人,设X为选出的两人赛程距离之和,求随机变量X的分布列9为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X,求X的分布列及期望10为了了解高一学生的体能情况,某校随机抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频率分布直方图如图所示,已知次数在100,110)间的频数为7,次数在110以下(不含110)视为不达标,次数在110,130)间的视为达标,次数在130以上视为优秀(1)求此次抽样的样本总数为多少人?(2)在样本中,随机抽取一人调查,则抽中不达标学生、达标学生、优秀学生的概率分别是多少?(3)将抽样的样本频率视为总体概率,若优秀成绩记为15分,达标成绩记为10分,不达标成绩记为5分,现在从该校高一学生中随机抽取2人,他们的分值和记为X,求X的分布列11某地区高考实行新方案,规定:语文,数学和英语是考生的必考科目,考生还须从物理,化学,生物,历史,地理和政治六个科目中选取三个科目作为选考科目若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定例如,学生甲选择“物理,化学和生物”三个选考科目,则学生甲的选考方案确定,“物理,化学和生物”为其选考方案某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:性别选考方案确定情况物理化学生物历史地理政治男生选考方案确定的有8人884211选考方案待确定的有6人430100女生选考方案确定的有10人896331选考方案待确定的有6人541001(1)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(2)假设男生,女生选择选考科目是相互独立的从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(3)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列12设某人有5发子弹,当他向某一目标射击时,每发子弹命中目标的概率为.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完(1)求他前两发子弹只命中一发的概率;(2)求他所耗用的子弹数X的分布列13袋子中有1个白球和2个红球(1)每次取1个球,不放回,直到取到白球为止,求取球次数X的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X的分布列;(3)每次取1个球,有放回,共取5次,求取到白球次数X的分布列专题3 超几何分布1在含有3件次品的10件产品中任取4件,则取到次品数X的分布列为_2从装有3个红球、2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X的概率分布列为X012P3某项大型赛事,需要从高校选拔青年志愿者,某大学学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动若所选3名学生中的女生人数为X,求X的分布列4某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问求:(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列5端午节吃粽子是我国的传统习俗设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同从中任意选取3个(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列6对某城市一天内单次租用共享自行车的时间在50分钟到100分钟的n人进行统计,按照租车时间(单位:分钟)50,60),60,70),70,80),80,90),90,100分组作出如下频率分布直方图,并作出租用时间的茎叶图(图中仅列出了时间在50,60),90,100的数据)(1)求n及频率分布直方图中x,y的值;(2)从租用时间在80分钟以上(含80分钟)的人中随机抽取4人,设随机变量X表示所抽取的4人中租用时间在80,90)内的人数,求随机变量X的分布列7PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物根据现行国家标准GB30952012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标从某自然保护区2018年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立方米)25,35)35,45)45,55)55,65)65,75)75,85频数311113(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列8国庆节期间,某旅行社组织了14人参加“国家旅游常识”知识竞赛,每人回答3个问题,答对题目个数及对应人数统计结果见下表:答对题目个数0123人数3254根据上表信息解答以下问题:(1)从14人中任选3人,求3人答对题目个数之和为6的概率;(2)从14人中任选2人,用X表示这2人答对题目个数之和,求随机变量X的分布列9已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论