




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020届高考数学第二轮专题讲座专题七 平面向量及其运用【考点聚焦】考点1:向量的概念、向量的加法和减法、实数与向量的积.考点2:向量的坐标运算、平面向量的数量积.考点3:解斜三角形.考点4:线段的定比分点、平移公式.考点5:向量的运用.【自我检测】1、 叫做向量;2、 叫做共线向量(平行向量);3、 叫做相等向量;4、 叫做单位向量.5、 向量加法法则是,.减法法则是.6、 设a(x1,y1),b(x2,y2),Ra b,它满足的运算性质有.a b,它满足的运算性质有.a,它满足的运算性质有.,它满足的运算性质有.cos=_=_.a b;a b.7、 正弦定理的内容是.8、 余弦定理的内容是.9、定比分点坐标公式是(其中).10、平移公式是 _.【重点难点热点】问题1:向量的有关概念与运算此类题经常出现在选择题与填空题中,在复习中要充分理解平面向量的相关概念,熟练掌握向量的坐标运算、数量积运算,掌握两向量共线、垂直的充要条件.例1:已知a是以点A(3,1)为起点,且与向量b = (3,4)平行的单位向量,则向量a的终点坐标是.思路分析:与a平行的单位向量e= 方法一:设向量a的终点坐标是(x,y),则a =(x-3,y+1),则题意可知,故填 (,-)或(,-)方法二与向量b = (-3,4)平行的单位向量是(-3,4),故可得a(-,),从而向量a的终点坐标是(x,y)= a(3,1),便可得结果.点评:向量的概念较多,且容易混淆,在学习中要分清、理解各概念的实质,注意区分共线向量、平行向量、同向向量、反向向量、单位向量等概念.例2:已知| a |=1,| b |=1,a与b的夹角为60, x =2ab,y=3ba,则x与y的夹角是多少?思路分析:要计算x与y的夹角,需求出|x|,|y|,xy的值.计算时要注意计算的准确性.解:由已知|a|=|b|=1,a与b的夹角为60,得ab=|a|b|cos=.要计算x与y的夹角,需求出|x|,|y|,xy的值.|x|2=x2=(2ab)2=4a24ab+b2=44+1=3,|y|2=y2=(3ba)2=9b26ba+a2=96+1=7.xy=(2ab)(3ba)=6ab2a23b2+ab =7ab2a23b2 =723=,又xy=|x|y|cos,即=cos,cos=,=arccos.即x与y的夹角是arccos点评:本题利用模的性质|a|2=a2,在计算x,y的模时,还可以借助向量加法、减法的几何意义获得:如图所示,设=b, =a, =2a,BAC=60.由向量减法的几何意义,得=2ab.由余弦定理易得|=,即|x|=,同理可得|y|=.问题2:平面向量与函数、不等式的综合运用当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以设计出有关函数、不等式的综合问题.此类题的解题思路是转化为代数运算,其转化途径主要有两种:利用向量平行或垂直的充要条件,利用向量数量积的公式和性质.例3已知平面向量a(,1),b(, ).(1) 若存在实数k和t,便得xa(t23)b, ykatb,且xy,试求函数的关系式kf(t);(2) 根据(1)的结论,确定kf(t)的单调区间.思路分析:欲求函数关系式k=f(t),只需找到k与t之间的等量关系,k与t之间的等量关系怎么得到?求函数单调区间有哪些方法?(导数法、定义法)导数法是求单调区间的简捷有效的方法?解:(1)法一:由题意知x(,), y(tk,tk),又xy故x y(tk)(tk)0.整理得:t33t4k0,即kt3t.法二:a(,1),b(, ), . 2,1且abxy,x y0,即k2t(t23)20,t33t4k0,即kt3t(2) 由(1)知:kf(t) t3t kf(t) t3,令k0得1t1;令k0得t1或t1.故kf(t)的单调递减区间是(1, 1 ),单调递增区间是(,1)和(1,).点评: 第(1)问中两种解法是解决向量垂直的两种常见的方法:一是先利用向量的坐标运算分别求得两个向量的坐标,再利用向量垂直的充要条件;二是直接利用向量垂直的充要条件,其过程要用到向量的数量积公式及求模公式,达到同样的求解目的(但运算过程大大简化,值得注意).第(2)问中求函数的极值运用的是求导的方法,这是新旧知识交汇点处的综合运用.演变3: 已知平面向量(,1),(,),若存在不为零的实数k和角,使向量(sin3), k(sin),且,试求实数k 的取值范围.点拨与提示:将例题中的t略加改动,旧题新掘,出现了意想不到的效果,很好地考查了向量与三角函数、不等式综合运用能力.演变4:已知向量,若正数k和t使得向量垂直,求k的最小值.点拨与提示:(1)利用向量垂直的充要条件找到k与t之间的等量关系.(2)利用均值不等式求最值.问题3:平面向量与三角函数的综合运用向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查.例4设函数f (x)a b,其中向量a(2cosx , 1), b(cosx,sin2x), xR.(1)若f(x)1且x,求x;(2)若函数y2sin2x的图象按向量c(m , n) ()平移后得到函数yf(x)的图象,求实数m、n的值.思路分析:本题主要考查平面向量的概念和计算、平移公式以及三角函数的恒等变换等基本技能,解: (1)依题设,f(x)(2cosx,1)(cosx,sin2x)2cos2xsin2x12sin(2x)由12sin(2x)=1,得sin(2x).x , 2x,2x=, 即x.(2)函数y2sin2x的图象按向量c(m , n)平移后得到函数y2sin2(xm)+n的图象,即函数yf(x)的图象.由(1)得f (x) , m,n1. 点评: 把函数的图像按向量平移,可以看成是C上任一点按向量平移,由这些点平移后的对应点所组成的图象是C,明确了以上点的平移与整体图象平移间的这种关系,也就找到了此问题的解题途径.一般地,函数yf (x)的图象按向量a(h , k)平移后的函数解析式为ykf(xh)演变5:已知a=(cos,sin),b=(cos,sin)(00,( ab)(ab)0,a2(21)abb20,2(21)2cos4540,或(1).演变2: 方程为:x12-y12=2 曲线为双曲线.演变3:由条件可得:k( sin)2,而1sin1, 当sin1时,k取最大值1; sin1时,k取最小值. 又k0 k的取值范围为 .演变4: ,|=,|= , 代入上式 3k3 当且仅当t=,即t=1时,取“”号,即k的最小值是2.演变5:(1)证法一:a=(cos,sin),b=(cos,sin)a+b(cos+cos,sin+ sin), a-b(cos-cos,sin- sin)(a+b)(a-b)=(cos+cos,sin+ sin)(cos-cos,sin- sin)=cos2-cos2+sin2- sin2=0(a+b)(a-b)证法二:a=(cos,sin),b=(cos,sin)|a|1,|b|1(a+b)(a-b)= a2-b2=|a|2-|b|2=0(a+b)(a-b)证法三:a=(cos,sin),b=(cos,sin)|a|1,|b|1,记a,b,则|=1,又,O、A、B三点不共线.由向量加、减法的几何意义,可知以OA、OB为邻边的平行四边形OACB是菱形,其中a+b,a-b,由菱形对角线互相垂直,知(a+b)(a-b)(2)解:由已知得|ka+b|与|a-kb|,又|ka+b|2(kcos+cos)2+(ksin+sin)2=k2+1+2kcos(),|ka+b|2(cos-kcos)2+(sin-ksin)2=k2+1-2kcos(), 2kcos()= -2kcos()又k0cos()000, =注:本题是以平面向量的知识为平台,考查了三角函数的有关运算,同时也体现了向量垂直问题的多种证明方法,常用的方法有三种,一是根据数量积的定义证明,二是利用数量积的坐标运算来证明,三是利用向量运算的几何意义来证明.演变6:设l的方程为yk(x1),代入椭圆方程整理得(4k21)x28k2x4(k21)0.设C(x1,y2),D(x2,y2),则x1x2.由得 所以.同理,记E得其中 .演变7:C的焦点为F(1,0),直线l的斜率为1,所以l的方程为yx1,将yx1代入方程y2=4x,并整理得x26x10设A(x1,y1),B(x2,y2),则有x1x26, x1x21,从而x1x2y1y22x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册消防工程师考试冲刺试卷 消防安全技术专项训练
- 2025年Python分布式系统开发培训试卷 深度解析
- 2025年注册水利工程师考试押题试卷 水利工程设计规范专项训练
- 星城镇党代会工作报告
- 民法典抵押课件
- 2026届福清市福清华侨中学化学高二上期末质量跟踪监视模拟试题含答案
- 2026届黑龙江省哈尔滨兆麟中学、阿城一中、尚志中学等六校化学高二上期中达标测试试题含解析
- 赣州市重点中学2026届高一化学第一学期期末教学质量检测模拟试题含解析
- 烟草面试笔试题目及答案
- 民法典婚姻家庭普法课件
- 封头理论重量计算公式
- 护理副高职称答辩5分钟简述范文
- (3)-2-1-药物的跨膜转运
- 幼小衔接资料合集汇总
- 八年级数学平面直角坐标系测试题
- GB/T 28575-2020YE3系列(IP55)三相异步电动机技术条件(机座号63~355)
- 储油罐有限空间作业安全技术措施表
- 传媒公司员工劳动合同(标准版)
- 缺血性肠病完整版本课件
- 学习《北方民族大学学生违纪处分规定(修订)》课件
- 设备出厂检验报告
评论
0/150
提交评论