




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年高考创新试题分类例析一、集合中的创新试题例1(2020年湖北卷)有限集合中元素个数记作card,设、都为有限集合,给出下列命题: 的充要条件是card= card+ card; 的必要条件是cardcard; 的充分条件是cardcard; 的充要条件是cardcard.其中真命题的序号是 (B ) A. 、 B. 、 C. 、 D. 、解选B。选由card= card+ card+ card知card= card+ cardcard=0。由的定义知cardcard。例2(2020年辽宁卷)设是R上的一个运算,A是R的非空子集,若对任意有,则称A对运算封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是(A)自然数集 (B)整数集 (C)有理数集 (D)无理数集【解析】A中121不是自然数,即自然数集不满足条件;B中120.5不是整数,即整数集不满足条件;C中有理数集满足条件;D中不是无理数,即无理数集不满足条件,故选择答案C。【点评】本题考查了阅读和理解能力,同时考查了做选择题的一般技巧排除法。例3(2020年四川卷)非空集合关于运算满足:(1)对任意,都有; (2)存在,使得对一切,都有,则称关于运算为“融洽集”;现给出下列集合和运算: 其中关于运算为“融洽集”_,_;(写出所有“融洽集”的序号)分析:对于对任意,都有;存在使得对一切,都有。对于,对任意,都有;但不存在,使得对一切,都有。对于,对任意,都有;且存在单位向量,使得对一切,都有。对于,对任意,不一定有,如果两个二次三项式的二次项前的系数互为相反数,则相加后就不是二次三项式了。对于,对任意,都有;两共轭复数相乘的积不是虚数。故填_,。例4 (2020年辽宁卷)设是R上的一个运算,A是R的非空子集,若对任意有,则称A对运算封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是(A)自然数集 (B)整数集 (C)有理数集 (D)无理数集【解析】A中121不是自然数,即自然数集不满足条件;B中120.5不是整数,即整数集不满足条件;C中有理数集满足条件;D中不是无理数,即无理数集不满足条件,故选择答案C。【点评】本题考查了阅读和理解能力,同时考查了做选择题的一般技巧排除法。例5(山东卷)定义集合运算:AB=zz= xy(x+y),zA,yB,设集合A=0,1,B=2,3,则集合AB的所有元素之和为(A)0 (B)6 (C)12 (D)18解:当x0时,z0,当x1,y2时,z6,当x1,y3时,z12,故所有元素之和为18,选D二、映射与函数中的创新试题例6(广东卷)对于任意的两个实数对和,规定:,当且仅当;运算“”为:;运算“”为:,设,若,则A. B. C. D. 解析:由得,所以,故选B.例7()为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文对应密文例如,明文对应密文当接收方收到密文时,则解密得到的明文为(C)(A)(B)(C)(D)分析:本题考查阅读和理解能力,加密规则为:明文对应密文事实上就是一个映射的概念。明文对应密文事实上就是对加密规则的一次应用。设明文为,则解之得,选取C。例6( 2020年重庆卷)如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的倍,则函数y=f(x)的图象是 ( D ) 题()图 分析:随着自变量x的匀速增加,首先阴影部分的面积增加得越来越快,当阴影超过圆心时,阴影部分的面积增加得越来越慢,利用函数图象的上凸下凹性易估选答案D。例82020年湖北卷)关于的方程,给出下列四个命题: 存在实数,使得方程恰有2个不同的实根; 存在实数,使得方程恰有4个不同的实根; 存在实数,使得方程恰有5个不同的实根; 存在实数,使得方程恰有8个不同的实根.其中假命题的个数是 (B)A. 0 B. 1 C. 2 D. 3解选B。本题考查换元法及方程根的讨论,要求考生具有较强的分析问题和解决问题的能力;据题意可令,则方程化为,作出函数的图象,结合函数的图象可知:(1)当t=0或t1时方程有2个不等的根;(2)当0t1时方程有4个根;(3)当t=1时,方程有3个根。故当t=0时,代入方程,解得k=0此时方程有两个不等根t=0或t=1,故此时原方程有5个根;当方程有两个不等正根时,即此时方程有两根且均小于1大于0,故相应的满足方程的解有8个,即原方程的解有8个;当时,方程有两个相等正根t,相应的原方程的解有4个;故选B。例9(2020年广东卷)A是由定义在上且满足如下条件的函数组成的集合:对任意,都有 ; 存在常数,使得对任意的,都有()设,证明:()设,如果存在,使得,那么这样的是唯一的;()设,任取,令证明:给定正整数k,对任意的正整数p,成立不等式解:对任意,所以对任意的,所以0AB.其中真命题的个数为(B)A.0 B.1 C.2 D.3【解析】对于直角坐标平面内的任意两点,定义它们之间的一种“距离”:若点C在线段AB上,设C点坐标为(x0,y0),x0在x1、x2之间,y0在y1、y2之间,则=在中,= 命题 成立,而命题在中,若则明显不成立,选B.例14(2020年全国卷I)用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A B C D分析:我们普遍了解这样一个事实:在周长一定的n边形中,正n边形面积最大。或许这个东西有点超纲,但是请原谅,我一时半会想不出用教材上的办法来解决此题。当n = 3时,这个普遍了解的事实可以用椭圆的知识这样来感性地解释:设三角形ABC的周长l为定值,角A、B、C分别对应三边a、b、c。先固定B、C两点,则b + c 是定值,这意味这点A在B、C为焦点的椭圆上(去除俩长轴端点),当A为椭圆的短轴端点时,A到线段BC的距离最远,此时ABC为等腰三角形,满足b = c。 假若,我们再固定A、C两点,再次调整点B的位置。由 我们知道,时,ABC面积最大。所以:,即(a,b)。或者换句话说,在数轴上,点对应的点被a、b分别对应的两个点“夹逼”着。无论是用代数语言还是几何语言,我们都能得到结论:再次调整后。只要类似于、 的调整我们可以一直进行,每进行一次,三角形的三边就“接近一次”,直到三边长最接近。最接近的情况当然是正三角形。(以上只是感性理解,并不代表证明。)按照我们所普遍了解的事实,调整3个边尽可能的相等:7,7,6此时三角形面积为:。选B。例15(2020年辽宁卷)曲线与曲线的(A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同【解析】由知该方程表示焦点在x轴上的椭圆,由知该方程表示焦点在y轴上的双曲线,故只能选择答案A。【点评】本题考查了椭圆和双曲线方程及各参数的几何意义,同时着重考查了审题能力即参数范围对该题的影响。五、立体几何中的创新试题ABCDA1B1C1D1第16题图A1例16(2020年安徽卷)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:3; 4; 5; 6; 7以上结论正确的为_。(写出所有正确结论的编号)解:如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选。ADCB例17(2020年江苏卷)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有图1(A)1个(B)2个(C)3个(D)无穷多个解:法一:本题可以转化为一个正方形可以有多少个内接正方形,显然有无穷多个法二:通过计算,显然两个正四棱锥的高均为,考查放入正方体后,面ABCD所在的截面,显然其面积是不固定的,取值范围是,所以该几何体的体积取值范围是点评:本题主要考查学生能否迅速构造出一些常见的几何模型,并不是以计算为主例18()水平桌面上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形)。在这4个球的上面放一个半径为R的小球,它和下面的4个球恰好相切,则小球的球心到水平桌面的距离是3R。分析:本题要迅速求解需抽象出一个立体几何模型,即以五个球的球心为顶点可得一个底面边长为4R,侧棱长为3R的正四棱锥,易求得正四棱锥高为R,故上面的小球的球心到水平桌面的距离是3R。点评:本题主要考查学生能否迅速构造出一些常见的几何模型,并不是以计算为主例19()平面的斜线 AB 交于点 B,过定点 A 的动直线与 AB 垂直,且交于点 C,则动 点 C 的轨迹是( A)(A)一条直线 (B)一个圆 (C)一个椭圆 (D)双曲线的一支【解析】过点A作一平面使得,则AB垂直内任一直线,当然垂直内任一过A点的直线,故过定点 A 的动直线与 AB 垂直,且交于点 C,则动 点 C 的轨迹是平面与平面的交线。故选A。例20(上海卷)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(A)48 (B) 18 (C) 24 (D)36 解析:正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;六、数列中的创新试题例21(2020年江西卷)已知等差数列an的前n项和为Sn,若,且A、B、C三点共线(该直线不过原点O),则S200( A )A100 B. 101 C.200 D.201解:依题意,a1a2001,故选A例22(2020年北京卷)在数列中,若 a1,a2 是正整数,且,3,4,5,则称 为“绝对差数列”. ()举出一个前五项不为零的“绝对差数列”(只要求写出前十项); ()若“绝对差数列”中,,,数列满足 n=1,2,3,分虽判断当时, 与的极限是否存在,如果存在,求出其极 限值; ()证明:任何“绝对差数列”中总含有无穷多个为零的项.(20)(共 14 分) ()解:,(答案不惟一) ()解:因为在绝对差数列中,.所以自第 20 项开始,该数列是,即自第 20 项开始。每三个相邻的项周期地取值 3,0,3. 所以当时,的极限 不存在. 当时, ,所以()证明:根据定义,数列必在有限项后出现零项.证明如下 假设中没有零项,由于,所以对于任意的n,都有,从而 当时, ; 当 时, 即的值要么比至少小1,要么比至少小1.令则由于是确定的正整数,这样减少下去,必然存在某项 ,这与()矛盾. 从而必有零项.若第一次出现的零项为第项,记,则自第项开始,每三个相邻的项周期地取值 0,, , 即所以绝对差数列中有无穷多个为零的项.例23(2020年湖南文史卷)在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.()求a4、a5,并写出an的表达式;()令,证明,n=1,2,.解()由已知得,. ()因为,所以. 又因为,所以 =. 综上,.七、不等式中的创新试题例24(北京卷)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口的机动车辆数如图所示,图中分别表示该时段单位时间通过路段、的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 (A) (B) (C) (D)解:依题意,有x150x355x35,x1x3,同理,x230x120x110x1x2,同理,x330x235x25x3x2故选C例25(2020年上海春卷)同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语言描述为:若有限数列 满足,则 (结论用数学式子表示).分析:本题需紧扣平均分这一定义再结合“在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高”这一事实,来提炼出两个不等式,当然不一定是下面的结果,也有其它形式的写法。和 八、排列组合二项式定理中的创新试题例26()(2020年湖北卷)将杨辉三角中的每一个数都换成分数,就得到一个如右图所示的分数三角形,称为莱布尼茨三角形. 从莱布尼茨三角形可以看出 ,其中=_ r1_.令,则=_1/2_.解填r1, 1/2.本题考查考生的类比归纳及推理能力,第一问对比杨辉三角的性质通过观察、类比、归纳可知莱布尼茨三角形中每一行中的任一数都等于其“脚下”两数的和,故此时,第二问实质上是求莱布尼茨三角形中从第三行起每一行的倒数第三项的和,即根据第一问所推出的结论只需在原式基础上增加一项,则由每一行中的任一数都等于其“脚下”两数的和,结合给出的数表可逐次向上求和为,故,从而。例27(2020年全国卷I)设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有A B C D分析:显然,设,则C是I的非空子集,且C中元素不少于2个(当然,也不多于5个)。另一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全产品研发人员保密协议及技术保密义务
- 出租车企业股权转让与城市交通管理服务合同
- 《国有土地产权方与承租管理公司合作协议》
- 成都高端住宅项目代理销售服务合同
- 时尚商业街区场地租赁及品牌入驻管理合同
- 餐饮连锁品牌股权联营合同
- 爆破拆除工程安全生产责任保险合同
- ICU急救药物的应用
- 智能制造参股经营合同文本
- 仓库管理员职位聘用及保密协议
- 2025年度会计人员继续教育会计法律法规答题活动测试100题答案
- 24秋国家开放大学《社会教育及管理》形考任务1-3参考答案
- 2024年河北省高考地理试卷(含答案逐题解析)
- 2024年江西省高考化学试卷(真题+答案)
- 内审内审员培训试题对内审员的考试版
- 水泥库筒仓滑模施工方案
- 华容道关卡(三张A3纸)
- 标准型号链条参数表-链节参数表
- TCCES 6003-2021 预制混凝土构件用金属预埋吊件
- 高三物理高考常考知识点选择题归纳
- 我国房屋安全管理的现状与对策
评论
0/150
提交评论