




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年四川省泸县第二中学高考适应性考试数学(文史类)一选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数, , , A B C D2已知角的顶点与原点重合,始边与轴的正半轴重合,若它的终边经过点,则A B C D12223已知单位向量、的夹角为,则在方向上的投影为A B C D4数列:1,2,x,8是等比数列,则实数x的值是( ) A. B.4 C.4 D.不存在5已知的角所对的边为;则A. B. C. D.6一个几何体的三视图如右图所示,则该几何体的体积为A B C D7若执行如图所示的程序框图,输出S的值为4,则判断框中应填入的条件是 Ak18 Bk17 Ck16 Dk158过双曲线的一个焦点作实轴的垂线,交双曲线于,两点,若线段的长度恰等于焦距,则双曲线的离心率为A B C D9.将函数的图象向左平移个单位,再向上平移个单位,得到图象,若,且,则的最大值为( )A B C. D10.函数,的解集为A. B. C. D.11.已知三棱锥四个顶点均在半径为的球面上,且,若该三棱锥体积的最大值为1,则这个球的表面积为( )A. B. C. D.12.点是半径为的圆外任意一点,过向圆引切线,切点分别为;则的取值范围是A. B. C. 二.填空题:本题共4小题,每小题5分,共20分。13. .14.若满足约束条件则的取值范围为 .15.,则 16已知点、分别为双曲线的右焦点和右支上的点,为坐标原点,若,且,则此双曲线的离心率为_三.解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.)17(本小题满分12分)已知各项均不为零的数列的前项和为,且对任意,满足()求数列的通项公式;()设数列满足,求数列的前项和18(本小题满分12分)某机构为了解某地区中学生在校月消费情况,随机抽取了 100名中学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.()求的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);()根据已知条件完成下面列联表,并判断能否有的把握认为“高消费群”与性别有关?(参考公式:,其中)19(本小题满分12分)如图,四棱锥中,且底面,为棱的中点()求证:直线平面;()当四面体的体积最大时,求四棱锥的体积20(本小题满分12分)如图,从椭圆上一点向轴作垂线,垂足恰为左焦点,又点是椭圆与轴正半轴的交点,点是椭圆与轴正半轴的交点,且,()求的方程;()过且斜率不为的直线与相交于两点,线段的中点为,直线与直线相交于点,若为等腰直角三角形,求的方程21(本小题满分12分)21. 已知函数.(I)求的最大值;(II)证明:对任意的,都有;(II)设,比较与的大小,并说明理由.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分22.(本小题满分10分)选修4-4:坐标系与参数方程已知在平面直角坐标系中,直线的参数方程为 (为参数),曲线的方程为.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.()求直线和曲线的极坐标方程:()曲线分别交直线和曲线于点,求的最大值及相应的值.23.(本小题满分10分)选修4-5:不等式选讲设函数,()当时,求不等式的解集; ()若恒成立,求实数的取值范围.2020年四川省泸县第二中学高考适应性考试数学(文史类)答案1 选择题1-5:BADBB 6-10:DCCCB 11-12:DA2 填空题 13. 14. 15. 16.17(1)当时, ,.,当时, ,两式相减得,因, ,故,数列是首项为4,公比为4的等比数列,.(2) , ,两式相减得:.所以.18.解:(1)由题意知且;解得所求平均数为(元)(2)根据频率分布直方图得到如下列联表根据上表数据代入公式可得所以没有的把握认为“高消费群”与性别有关.19解:(1)因为,设为的中点,所以,又平面,平面,所以,又,所以平面,又,所以平面(2),设,则四面体的体积,当,即时体积最大,又平面,平面,所以,因为,所以平面,20.解:()令,得.所以.直线的斜率.直线的斜率.故解得,.由已知及,得,所以,解得.所以,所以的方程为 ()易得,可设直线的方程为, 联立方程组消去,整理得, 由韦达定理,得,所以,即所以直线的方程为,令,得,即,所以直线的斜率为,所以直线与恒保持垂直关系,故若为等腰直角三角形,只需, 即,解得,又,所以,所以,从而直线的方程为:或 21()因为,故在上单增,在上单减,(),设,则,故在上是增加的,在上是减少的,故,.所以对任意的恒成立(), 且,故只需比较与的大小,令,设,则.因为,所以,所以函数在上是增加的,故.所以对任意恒成立.即,从而有.22. 解:,直线的普通方程为: ,直线的极坐标方程为.曲线的普通方程为,的参数方程为: .(5分(2)直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店员英文面试题目及答案
- 法律明白人培训
- 景区安全培训内容大纲
- 口罩安全标准知识培训课件
- 口红化妆师知识培训课件
- 培训记不住知识点的原因
- 口才课课件教学课件
- 培训行业知识付费系统课件
- 2025年绿色生态工业园区场地租赁合作协议
- 2025老年慢性病管理医疗资源对接与诊疗服务协议
- 2025安徽农业大学辅导员考试试题及答案
- 井工煤矿风险监测预警处置方案之安全监控系统监测预警处置方案
- 入股买船合同协议书
- 反洗钱知识竞赛题库反洗钱法知识测试题题库(题目+答案+解析)
- NB/T 11629-2024煤炭行业物资分类与编码规范
- 2025-2030中国增强型飞行视觉系统行业市场发展趋势与前景展望战略研究报告
- 电梯有限空间作业安全专项施工方案
- 《锂离子电池正极材料研究》课件
- 无呕吐病房的CINV管理
- JCC工作循环检查流程与标准
- 门窗工程采购相关知识
评论
0/150
提交评论