




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020届高三毕业班第一次适应性测试数学(文科)考生注意:1. 本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分。考试时间120分钟。2. 请将各题答案填写在答题卡上。3. 本试卷主要考试内容:高考全部范围。第卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则( )A. B. C. D. 【答案】C【解析】【分析】解不等式得集合B,再利用集合的并集和补集定义直接求解即可.【详解】因为,所以,故选:C.【点睛】本题主要考查了集合的基本运算,属于基础题.2.已知复数,则它的共轭复数在复平面内对应的点的坐标为( )A. B. C. D. 【答案】A【解析】【分析】利用复数的除法运算得,进而可得共轭复数,从而得解.【详解】因为,所以,对应点的坐标为.故选:A【点睛】本题主要考查了复数的除法运算及共轭复数的概念,属于基础题.3.在等比数列中,若,则( )A. B. C. D. 【答案】C【解析】【分析】由得公比,进而可得首项.【详解】因为,所以,从而.故选:C.【点睛】本题考查了等比数列的基本量运算,属于基础题.4.已知,则( )A. B. C. D. 【答案】D【解析】【分析】由两角差的正弦得,进而有,结合角的范围可得解.【详解】因为,所以由,得.故选:D【点睛】本题主要考查了两角差的正弦展开及同角三角函数的基本关系,考查了计算能力,属于基础题.5.如图所示,长方体的棱和的中点分别为,则异面直线与所成角的正切值为( )A. B. C. D. 【答案】B【解析】【分析】作,垂足为,连接,因为,所以为异面直线与所成的角(或补角),进而根据边长求解即可.【详解】作,垂足为,连接,因为,所以为异面直线与所成的角(或补角),且,因为,所以.故选:B【点睛】本题主要考查了异面直线所成角的求解,属于基础题.6.已知直线:与圆:相交于,两点,若,则圆的标准方程为( )A. B. C. D. 【答案】A【解析】【分析】先求得圆心到直线的距离,再结合弦长为6,利用垂径定理可求得半径.【详解】圆:可化为,设圆心到直线的距离为,则,又,根据,所以圆的标准方程为.故选:A【点睛】本题主要考查了圆的弦长公式,垂径定理的应用,属于基础题.7.已知,分别是函数图象上相邻的最高点和最低点,则( )A. B. C. D. 【答案】D【解析】【分析】根据两个最值得横坐标的距离可得周期,进而得,把的坐标代入方程,可得,从而得解.【详解】因为,所以,把的坐标代入方程,得,因为,所以,.故选:D【点睛】已知函数的图象求参数的方法:可由观察图象得到,进而得到的值求的值的方法有两种,一是“代点”法,即通过代入图象中的已知点的坐标并根据的取值范围求解;另一种方法是“五点法”,即将作为一个整体,通过观察图象得到对应正弦函数图象中“五点”中的第几点,然后得到等式求解考查识图、用图的能力8.元朝著名数学家朱世杰在四元玉鉴中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示.若将“没了壶中酒”改为“剩余原壶中的酒量”,即输出值是输入值的,则输入的( )A. B. C. D. 【答案】C【解析】【分析】模拟执行程序框图,使得最后退出循环时,即可得解.【详解】时,;时,;时,;时,退出循环.此时,解得.故选:C【点睛】本题主要考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确结论,属于基础题.9.已知实数,满足,则目标函数的最小值为( )A. -24B. -22C. -17D. -7【答案】B【解析】【分析】作出不等式的可行域,平移直线,纵截距最大时z有最小值,数形结合即可得解.【详解】画出可行域,如图所示,平移直线,纵截距最大时z有最小值.,解得当直线过点时,取得最小值-22.故选:B【点睛】本题主要考查了简单的线性规划问题,考查了数形结合的思想,属于基础题.10.已知四棱锥,平面,.若四面体的四个顶点都在同一个球面上,则该球的表面积为( )A. B. C. D. 【答案】C【解析】【分析】设的中点为,的中点为,可知点为四面体外接球的球心,进而根据垂直关系利用边长求解即可.【详解】因为,所以,四点共圆,.由,得,所以.设的中点为,的中点为,因为平面,所以平面.易知点为四面体外接球的球心,所以,.故选:C【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径 11.已知抛物线的焦点为,准线为,直线交抛物线于,两点,过点作准线的垂线,垂足为,若等边三角形的面积为,则的面积为( )A. B. C. 16D. 【答案】B【解析】【分析】由为等边三角形,得,边长为,结合条件中的面积可得,进而由直线与抛物线联立可得交点坐标,利用面积公式求解即可.【详解】因为为等边三角形,所以,边长为,由,得,抛物线方程为,联立,得,所以,所以,.故.故选:B【点睛】本题主要考查了直线与抛物线的位置关系,利用了抛物线的定义研究抛物线上的点到焦点的距离,考查了数形结合和计算能力,属于中档题.12.设,则( )A. B. C. D. 【答案】D【解析】【分析】由比较,的大小,利用中间量比较,,从而得解.【详解】,.,.又,即.故选:D【点睛】本题主要考查了利用对数函数的单调性比较大小,解题的关键是找到合适的中间量进行比较大小,属于难题.第卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.在正方形中,为线段的中点,若,则_【答案】【解析】【分析】由即可得解.【详解】因为,所以.故答案为:【点睛】本题主要考查了向量的加法运算和线性运算,属于基础题.14.已知数列的前项和为,若,则_【答案】26【解析】【分析】根据条件可知数列为等差数列,先求数列的公差,进而利用求和公式求和即可.【详解】因为,所以数列为等差数列,设公差为,则,所以.故答案为:26.【点睛】本题主要考查了等差数列的定义及求和公式的应用,属于基础题.15.不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,则摸到同色球的概率为_【答案】【解析】【分析】基本事件总数n10,摸到同色球包含的基本事件个数m4,由此能求出摸到同色球的概率【详解】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,基本事件总数n10,摸到同色球包含的基本事件个数m4,摸到同色球的概率p故答案为:【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题16.已知函数的图象是以点为中心的中心对称图形,曲线在点处的切线与曲线在点处的切线互相垂直,则_【答案】【解析】【分析】由中心对称得,可解得,再由两切线垂直,求导数得斜率,令其乘积为-1,即可得解.【详解】由,得,解得,所以.又,所以.因为,由,得,即.故答案为:【点睛】本题主要考查了函数的中心对称性,考查了导数的几何意义即切线斜率,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在中,内角,的对边分别为,且.(1)求;(2)若,的面积为,求的值.【答案】(1) ;(2)【解析】【分析】(1)根据余弦定理直接求解可得,进而可得;(2)由正弦定理角化边可得,再利用面积公式求解即可.【详解】(1)因为,所以,所以,从而.(2)因为,所以,即.因为的面积为,所以,即,所以,解得.【点睛】本题主要考查了正余弦定理及面积公式求解三角形,属于基础题.18.某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.年龄人数10015020050已知,三个年龄段的上网购物的人数依次构成递减的等比数列.(1)求的值;(2)若将年龄在内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.【答案】(1),;(2)【解析】【分析】(1)根据人数和为100及人数的等比关系列方程组求解即可;(2)在抽取的5人中,有3人是消费主力军,分别记为,有2人是消费潜力军,分别记为,利用列举法及古典概型的公式求解即可.【详解】(1)由题意得,解得,.(2)由题意可知,在抽取的5人中,有3人是消费主力军,分别记为,有2人是消费潜力军,分别记为,.记“这2人中至少有一人是消费潜力军”为事件.从这5人中抽取2人所有可能情况为,共10种.符合事件的有,共7种.故所求概率为.【点睛】本题主要考查了统计的简单应用,考查了古典概型的求解,属于基础题.19.如图,在四棱锥中,底面为菱形,为线段的中点,为线段上的一点.(1)证明:平面平面.(2)若交于点,求三棱锥的体积.【答案】(1)见解析;(2)【解析】【分析】(1)由得平面,进而可得证;(2)先计算,再由得,从而可得体积.【详解】(1)证明:因为,为线段的中点,所以.又,所以为等边三角形,.因为,所以平面,又平面,所以平面平面.(2)解:因为,所以,同理可证,所以平面.因为是的中位线,所以,又,所以.设点到底面的距离为,由,得,所以.【点睛】本题主要考查了线面垂直、面面垂直的证明,考查了三棱锥体积的求解,属于基础题.20.设是圆上的任意一点,是过点且与轴垂直的直线,是直线与轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.(1)求曲线的方程;(2)已知点,过的直线交曲线于两点,交直线于点.判定直线的斜率是否依次构成等差数列?并说明理由.【答案】(1);(2)见解析【解析】【分析】(1)设点,由条件的线段比例可得,代入圆的方程中即可得解;(2)设直线的方程为,与椭圆联立得得,设,由 ,结合韦达定理代入求解即可.【详解】(1)设点,因为,点在直线上,所以,.因为点在圆:上运动,所以.将式代入式,得曲线的方程为.(2)由题意可知的斜率存在,设直线的方程为,令,得的坐标为.由,得.设,则有,.记直线,的斜率分别为,从而,.因为直线的方程为,所以,所以 .把代入,得.又,所以,故直线,的斜率成等差数列.【点睛】本题主要考查了直线与椭圆的位置关系,斜率的坐标表示,设而不求的数学思想,考查了计算能力,属于中档题.21.已知函数.(1)讨论函数的单调区间;(2)证明:.【答案】(1)见解析;(2)见解析【解析】【分析】(1),分和两种情况讨论单调性即可;(2)法一:将不等式变形为,构造函数,证明即可;法二:将不等式变形为,分别设,求导证明即可.【详解】(1) ,当时,函数的单调增区间为,无减区间;当时,当,单增区间为上增,单调减区间为上递减。(2)解法1: ,即证,令,令,在,上单调递增,故存在唯一的使得,)在上单调递减,在上单调递增,当时, , 时,; 所以在上单调递减,在上单调递增,得证.解法2:要证: ,即证: ,令,当时,时,;所以在上单调递减,在上单调递增, ; 令,当 时,时,; 所以在上单调递增,在上单调递减,得证.【点睛】本题考查利用导数研究函数单调性,最值,证明不等式问题,第二问证明的方法比较灵活,对不等式合理变形,转化为函数问题是解题关键,是难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与曲线相切.(1)求曲线的极坐标方程;(2)在曲线上任取两点,该两点与原点构成,且满足,求面积的最大值.【答案】(1);(2)【解析】【分析】(1)由直线与圆相切,可得圆心到直线的距离等于半径,列方程求解,进而由直角坐标转化为极坐标即可;(2)设,(,),由,展开利用三角函数求最值即可.【详解】(1)由题意可知,直线的直角坐标方程为.曲线是圆心为,半径为的圆,由直线与曲线相切可得.可知曲线的直角坐标方程为.所以曲线的极坐标方程为,即.(2)由(1)不妨设,(,). .当时,面积的最大值为.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江西景德镇学院选聘思政课专任教师、专职辅导员18人考试模拟试题及答案解析
- 汉字科学课件
- 统编版2025-2026学年五年级上册语文期末专项复习-句子(有答案)
- 江西省赣州市南康区第一中学2024-2025学年高一下学期期中模拟物理试卷(含解析)
- 第二章有理数 单元检测卷提优含解析 2025-2026学年数学苏科版七年级上册
- 汉字学识字课件
- 3D打印技术与应用 知到智慧树见面课答案-1
- 《人体系统解剖学》知到智慧树答案
- 建筑施工协议书集合15篇
- 银行渠道数字化转型的研究报告
- 2023年山东水发集团有限公司招聘笔试题库及答案解析
- SB/T 10941-2012自动制冰机试验方法
- GB/T 6804-2008烧结金属衬套径向压溃强度的测定
- 沙盘游戏治疗(2017)课件
- SY∕T 5280-2018 原油破乳剂通用技术条件
- 苏教版五年级数学下册【全册课件完整版】
- 班组施工任务单
- 职业健康检查结果告知书模板
- 2022年小型发电站设备缺陷管理制度
- 慢性肾衰竭(慢性肾脏病)诊疗指南(内容清晰)
- 钢结构模块化安装施工方案
评论
0/150
提交评论