




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学案23随机事件的概率 班级_ 姓名_导学目标: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式自主梳理1事件的分类(1)一般地,我们把在条件S下,_的事件,叫做相对于条件S的必然事件,简称必然事件(2)在条件S下,_的事件,叫做相对于条件S的不可能事件,简称不可能事件(3)在条件S下_的事件,叫做相对于条件S的随机事件,简称随机事件事件一般用大写字母A,B,C表示2频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=_为事件A出现的频率(2)在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个_附近摆动,即随机事件A发生的频率具有_,这个常数叫事件A的概率3事件的关系与运算定义符号表示包含关系如果事件A_,则事件B_,这时称事件B包含事件A(或称事件A包含于事件B)_(或_)相等关系若BA且_,那么称事件A与事件B相等_并事件(和事件)若某事件发生_,则称此事件为事件A与事件B的并事件(或和事件)_(或_)交事件(积事件)若某事件发生_,则称此事件为事件A与事件B的交事件(或积事件)_(或_)互斥事件若AB为_事件,那么称事件A与事件B互斥AB_对立事件若AB为_事件,AB为_事件,那么称事件A与事件B互为对立事件P (B)_(或P(A)_)4.概率的几个基本性质(1)概率的取值范围:_. (2)必然事件的概率:P(E)_.(3)不可能事件的概率:P(F)_.(4)概率的加法公式:如果事件A与事件B互斥,则P(AB)_.(5)对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件P(AB)_,P(A)_.自我检测1下列说法正确的是()A某事件发生的频率为P(A)1.1B不可能事件的概率为0,必然事件的概率为1C小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D某事件发生的概率是随着试验次数的变化而变化的2如果把必然事件和不可能事件看做随机事件的极端情形,随机事件A的概率取值范围是()AP(A)0 BP(A)0 C0P(A)1 D0P(A)13从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是()A3个都是正品 B至少有1个是次品C3个都是次品 D至少有1个是正品4袋中装有白球3个,黑球4个,从中任取3个,恰有1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球在上述事件中,是对立事件的为() A B C D5关于互斥事件的理解,错误的是()A若A发生,则B不发生;若B发生,则A不发生B若A发生,则B不发生,若B发生,则A不发生,二者必具其一CA发生,B不发生;B发生,A不发生;A、B都不发生D若A、B又是对立事件,则A、B中有且只有一个发生探究点一随机事件的概念例1一个口袋内装有5个白球和3个黑球,从中任意取出一只球(1)“取出的球是红球”是_事件,它的概率是_;(2)“取出的球是黑球”是_事件,它的概率是_;(3)“取出的球是白球或是黑球”是_事件,它的概率是_.变式1某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.探究点二随机事件的频率与概率例2某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答:(1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?(结果保留分数)变式2某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n8101520304050进球次数m681217253238进球频率(1)填写上表(2)这位运动员投篮一次,进球的概率约是_.探究点三互斥事件与对立事件的概率例3一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率变式3一个箱子内有5张票,其号数分别为1,2,5,从中任取2张,其号数至少有一个为奇数的概率是多少?【课后练习与提高】1从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是()恰好有1件次品和恰好有两件次品;至少有1件次品和全是次品;至少有1件正品和至少有1件次品;至少1件次品和全是正品A B C D2下列说法:频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;做n次随机试验,事件A发生m次,则事件A发生的频率就是事件A发生的概率;百分率是频率,但不是概率;频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;频率是概率的近似值,概率是频率的稳定值其中正确的是()A B C D3甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么()A甲是乙的充分条件但不是必要条件B甲是乙的必要条件但不是充分条件C甲是乙的充要条件D甲既不是乙的充分条件,也不是乙的必要条件4某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是()A至多有1次中靶 B2次都中靶C2次都不中靶 D只有1次中靶5从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g501.5 g之间的概率约为_6盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个若从中随机取出2个球,则所取出的2个球颜色不同的概率为_7某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率8袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?9现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组(1)求A1被选中的概率; (2)求B1和C1不全被选中的概率10.(2020湖南)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土方运输与堆存规划方案
- 防水施工质量控制方案
- 堤防溃口预防与应急响应方案
- 塑钢门窗安装施工组织设计
- 产业园区生态环境影响评估与优化方案
- 宜昌疾控考试题目及答案
- 水利工程项目空地租赁及水资源利用合同
- 现代化婚内子女抚养责任、监护权及财产支持合同
- 垃圾处理厂环境影响评价技术协作协议
- 物业企业总经理职位聘用与品牌建设合同
- 工业机器人离线编程与应用-认识FANUC工业机器人
- 义务教育信息科技课程标准(2022年版)解读
- 空调维保项目进度保障计划
- 既有建筑混凝土结构改造设计规范DBJ-T 15-182-2020
- 放射科室风险评估报告
- 各类组织架构图课件
- 创伤性窒息护理课件
- 人口老龄化对寿险产品需求结构的影响
- 最常用2000个英语单词-电子表格版
- 《解决方案营销》节选版
- 秋季慢性病知识讲座
评论
0/150
提交评论