高考数学冲刺复习 精练37_第1页
高考数学冲刺复习 精练37_第2页
高考数学冲刺复习 精练37_第3页
高考数学冲刺复习 精练37_第4页
高考数学冲刺复习 精练37_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学冲刺复习 数学精练(37) 1.若直线经过圆的圆心,则的最小值是 2. 某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的记X为该毕业生得到面试的公司个数若P(X0),则随机变量X的数学期望E(X)_ 3.(江西理19)设.(1)若在上存在单调递增区间,求的取值范围;(2)当时,在上的最小值为,求在该区间上的最大值.4.设函数,曲线过P(1,0),且在P点处的切斜线率为2(I)求a,b的值;(II)证明: 5.已知函数()证明:曲线()若,求的取值范围。6.已知函数, ()求函数的定义域;()求函数的单调区间;()当0时,若存在x使得成立,求的取值范围.参考答案1. 4 2 .3.(1)在上存在单调递增区间,即存在某个子区间 使得.由,在区间上单调递减,则只需即可。由解得,所以,当时,在上存在单调递增区间.(2)令,得两根,.所以在,上单调递减,在上单调递增当时,有,所以在上的最大值为又,即所以在上的最小值为,得,从而在上的最大值为.4.解:(I) 由已知条件得,解得 (II),由(I)知设则而 5.() ,又曲线的切线方程是:,在上式中令,得 ,所以曲线()由得,(i)当时,没有极小值;(ii)当或时,由得,故。由题设知,当时,不等式无解;当时,解不等式得综合(i)(ii)得的取值范围是。6.()当时函数的定义域为; 当时函数的定义域为 ()令时,得即,当时,时,当时,故当 时,函数的递增区间为,递减区间为当时,所以,故当时,在上单调递增当时,若,;若,故当时,的单调递增区间为;单调递减区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论