


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习札记第2章 数列【知识结构】数 列定 义应 用通项公式数列求和等差数列等比数列定义通项公式等差(比)数列前n项和公式性质【重点难点】重点:数列及其通项公式的定义;数列的前n项和与通项公式的关系及其求法;难点:正确运用数列的递推公式求数列的通项公式;对用递推公式求出的数列的讨论;等差等比数列的应用和性质。第1课 数列的概念及其通项公式【学习导航】 知识网络 项数数列数列定义项数列有关概念数列与函数的关系数列通项公式通项学习要求 1理解数列概念,了解数列的分类;2理解数列和函数之间的关系,会用列表法和图象法表示数列; 3理解数列的通项公式的概念,并会用通项公式写出数列的前几项,会根据简单数列的前几项写出它的一个通项公式;4提高观察、抽象的能力【自学评价】1数列的定义:_叫做数列(sequence of number).【注意】数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.思考:简述数列与数集的区别._.2数列的项:_都叫做这个数列的项(term). 各项依次叫做这个数列的第1项(或首项),第2项,第n 项,.3数列的分类:按项分类:有穷数列(项数有限);无穷数列(项数无限).4数列的通项公式:如果数列的第项与 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式(the formula of general term).注意:并不是所有数列都能写出其通项公式,如数列1,1.4,1.41, 1.414,;一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,它的通项公式可以是,也可以是;数列通项公式的作用:求数列中任意一项;检验某数是否是该数列中的一项.5. 数列的图像都是一群孤立的点. 从映射、函数的观点来看,数列可以看作是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式,因此,数列也可根据其通项公式画出其对应图象6数列的表示形式:_.【精典范例】【例1】 已知数列的第项an 为,写出这个数列的首项、第项和第项【解】【例2】根据下面数列的通项公式,写出它的前5项,并作出它的图象:.【解】【例3】写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1),-, ,-;(2)0, 2, 0, 2分析:写出数列的通项公式,就是寻找与项数的对应关系【解】点评:(1)将数列的整数部分和分数部分进行分别处理,然后再整体合并;(2) 将数列进行整体变形以便能呈现出与序号相关且便于表达的关系.【追踪训练一】学习札记1下列解析式中不是数列1,-1,1,-1,1,-1,的通项公式的是 ( )A. B. C. D. 2数列的一个通项公式是 ( )A. B. C. D. 3数列的一个通项公式为_.【选修延伸】【例3】在数列an中,a1=2,a17=66,通项公式是项数n的一次函数.(1)求数列an的通项公式;(2)88是否是数列an中的项.【解】 思维点拔:已知数列的通项,怎样判断一个含有参数的代数式是否为数列中的项? 例如:已知数列的通项为,判断是否为数列中的项?提示:可把化成通项公式的形式,即,因为,所以满足通项公式的意义,所以是数列中的第项【追踪训练二】1已知数列,那么是这个数列的第 ( )项.A. B. C. D. 2数列,是一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业租赁合同模板
- 2025苏州工业园区二手房(精装修)买卖合同
- 操作作业考试题及答案七年级
- 葡萄种植课件
- 葡萄种植与养护知识培训课件
- 2025贷款抵押用担保合同
- 萨伏伊别墅课件
- 营销课件教学课件
- 2025年高考化学试题分类汇编:化学用语阿伏加德罗常数(含解析)
- 2025-2026学年人教版八年级地理上册期末评估测试卷(含答案)
- 小学形容词副词单选题200道及答案(完整版)
- 湘艺版音乐七年级下册第二单元 野蜂飞舞 教学设计教案1000字
- 2025届辽宁省辽南协作校高一物理第二学期期末考试试题含解析
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
- 企业商标保护风险评估与管理
- 建筑地基处理技术规范DBJ-T 15-38-2019
- 中国律师学 课件 陈卫东 第1-9章 律师制度的产生和发展-律师的管理
- 法学概论(第七版) 课件全套 谷春德 第1-7章 我国社会主义法的基本理论 - 国际法
- 部编版八年级上册历史第一单元知识点
- 2024昆仑燃气安全方面的基本知识某年05
- 设备维保的法律法规与标准要求
评论
0/150
提交评论