




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解析几何中有关参数范围问题的求解策略曾庆宝解析几何中的参数范围问题是平时考试和高考中的重要考查内容,但这一类题综合性强、变量多、涉及知识面广,是难点问题。解答这类问题往往运用函数思想、方程思想、数形结合思想等,将问题转化为求函数的值域划最值等来解决。一. 运用数形结合探求参数范围 例1. m为何值时,直线与半椭圆只有一个公共点?分析:因为椭圆为半条曲线,若利用方程观点研究这类问题,则需转化成根的分布问题,较麻烦且易出错。若用数形结合的思想来研究则直观易解。如图,是直线系中的三条直线,这三条直线是直线系中的直线与半椭圆交点个数的“界线”,在与之间的直线(含,不含)及都是与半椭圆只有一个公共点的直线,而m是这些直线在y轴上的截距,由此可求m的范围。解:过,则过,则由得到关于x的一元二次方程。利用0得综上所得,或二. 构建函数关系探求参数范围 例2. P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点。已知与共线,与共线,且。求四边形PMQN的面积的最小值和最大值。分析:显然,我们只要把面积表示为一个变量的函数,然后求函数的最值即可。解:如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQMN,直线PQ、MN中至少有一条存在斜率,不妨设PQ的斜率为k,又PQ过点F(0,1),故PQ方程为。代入椭圆方程得设P、Q两点的坐标分别为,则从而当时,MN的斜率为,同上可推得故四边形面积令,得因为,此时,且S是以u为自变量的增函数,所以。当时,MN为椭圆长轴,综合知,四边形PMQN面积的最大值为2,最小值为。三. 构造含参数不等式探求参数范围 例3. 已知抛物线,过M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,。(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求NAB面积的最大值。分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把NAB的面积表示为一个变量的函数,然后再求它的最大值。解:(1)直线的方程为:,将代入抛物线方程,设得设直线与抛物线两交点的坐标分别为,则,并且又所以解得:(2)令AB中点为Q,即NAB的面积的最大值为。 例4. 已知梯形ABCD中,点E满足,双曲线过C、D、E三点,且以A、B为焦点。当时,求双曲线离心率e的取值范围。分析:显然,我们只要找到e与的关系,然后利用解不等式或求函数的值域即可求出e的范围。解:如图建立坐标系,CDy轴,因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于y轴对称。依题意,记,其中为双曲线的半焦距,h是梯形的高。由,即解得:设双曲线的方程为,则离心率由点C、E在双曲线上,将点C、E的坐标和代入双曲线的方程得:将式代入式,整理得:故依题设得:解得:所以双曲线的离心率的取值范围是四. 运用几何性质探求参数范围 例5. 已知椭圆,A、B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点。证明:分析:欲证满足关于参数a、b的不等式,须从题中找出不等关系,由椭圆的性质可知,椭圆上的点的坐标满足如下条件:,因此问题转化为寻求与x的关系。证明:由题设可知,点P在线段AB的垂直平分线上,所以若设,则有:因为点A、B在椭圆上,所以从而由可得,五. 构造方程运用判别式探求参数范围 例6. 已知抛物线上存在关于直线对称的相异两点,求p的取值范围。分析:解决本题的关键是建立方程,运用判别式找到关于p的不等式。解:设抛物线上关于直线对称的两点是设直线MN的方程为,代入抛物线方程,得则则MN的中点P的坐标为又因点P在直线上,所以,即又将代入得:解得:【练习】 1. 设椭圆的两个焦点是与,且,椭圆上存在一点P,使得直线与垂直。(1)求实数m的取值范围;(2)设是相应于焦点的准线,直线与相交于点Q若,求直线的方程。 2. 在以O为原点的直角坐标系中,点为OAB的直角顶点。已知,且点B的纵坐标大于零。(1)求向量的坐标;(2)求圆的关于直线OB对称的圆的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年内分泌科糖尿病临床诊断对策考试答案及解析
- 学校四班级春季教学工作方案
- 2025年康复医学综合治疗方案设计模拟测试答案及解析
- 2025年麻醉科安全操作流程考核答案及解析
- 2025年心电图解读技能应用考核测试卷答案及解析
- 2025年肿瘤放疗放射治疗的副作用模拟测试卷答案及解析
- 新质生产力的哲学与文化思考
- 2025年心血管病学心梗后康复训练考试卷答案及解析
- 江苏新质生产力发展动态
- 新质生产力的核心体现维度
- 收费员考试题库及答案
- 城市更新中装饰工程重点及难点措施
- 惠普尔养障体肺炎诊疗要点解析
- 棒针编织教学课件
- 护士关爱活动方案
- 职业健康:放射卫生知识培训计划
- 口腔团队的管理与建设
- 公司维护人员薪酬管理制度
- 2025至2030年中国宠物机器狗行业投资前景及策略咨询报告
- 公司关工委活动方案
- 链家签约文件合同模板
评论
0/150
提交评论