




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数求导1. 简单函数的定义求导的方法(一差、二比、三取极限)(1)求函数的增量;(2)求平均变化率。(3)取极限求导数2导数与导函数的关系:特殊与一般的关系。函数在某一点的导数就是导函数,当时的函数值。3常用的导数公式及求导法则:(1)公式,(C是常数) (2)法则:, 例:(1) (2) (3) (4) (5) 复合函数的导数如果函数在点x处可导,函数f (u)在点u=处可导,则复合函数y= f (u)=f 在点x处也可导,并且 (f )= 或记作 =熟记链式法则若y= f (u),u= y= f ,则=若y= f (u),u=,v= y= f ,则 =(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。例1函数的导数.解:设,则 例2求的导数解:,例3 求下列函数的导数 解:(1)令 u=3 -2x,则有 y=,u=3 -2x由复合函数求导法则 有y=在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u,于是前面可以直接写出如下结果:y=在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:y=例4求下列函数的导数(1)y=cos x (2)y=ln (x+)解:(1)y=cos x由于y=cos x是两个函数与cos x的乘积,而其中又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求导数时再用复合函数求导法则,于是y=()cos x -sin x =-sin x=-sin x(2)y=ln (x+)由于y=ln (x+)是u= x+与y=ln u复合而成,所以对此函数求导时,应先用复合函数求导法则,在求时用函数和的求导法则,而求()的导数时再用一次复合函数的求导法则,所以y= 1+()= =例 5 设 求 .解 利用复合函数求导法求导,得.小结 对于复合函数,要根据复合结构,逐层求导,直到最内层求完,对例4中括号层次分析清楚,对掌握复合函数的求导是有帮助的.例6求y=(x23x+2)2sin3x的导数.解:y=(x23x+2)2sin3x+(x23x+2)2(sin3x)=2(x23x+2)(x23x+2)sin3x+(x23x+2)2cos3x(3x)=2(x23x+2)(2x3)sin3x+3(x23x+2)2cos3x.1求下函数的导数.(1) (2)(1)y=(5x3)4 (2)y=(2+3x)5 (3)y=(2x2)3 (4)y=(2x3+x)2(1)y= (2)y= (3)y=sin(3x) (4)y=cos(1+x2); ; 1求下列函数的导数 (1) y =sinx3+sin33x; (2) (3) 2.求的导数一、选择题(本题共5小题,每题6分,共30分)1. 函数y=的导数是( )A. B. C. D. 3. 函数y=sin(3x+)的导数为( )A. 3sin(3x+) B. 3cos(3x+)C. 3sin2(3x+) D. 3cos2(3x+)4. 曲线在x=2处的导数是12,则n=( )A. 1 B. 2 C. 3 D. 45. 函数y=cos2x+sin的导数为( )A. 2sin2x+B. 2sin2x+C. 2sin2x+D. 2sin2x6. 过点P(1,2)与曲线y=2x2相切的切线方程是( )A. 4xy2=0 B. 4x+y2=0 C. 4x+y=0 D. 4xy+2=0二、填空题(本题共5小题,每题6分,共30分)8. 曲线y=sin3x在点P(,0)处切线的斜率为_。9. 函数y=xsin(2x)cos(2x+)的导数是 。10. 函数y=的导数为 。11. 。例2计算下列定积分(1);(2)(3)5的值等于 ( ) (B) (C) (D) 9.计算由曲线和所围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教六年级下册期末数学试题(比较难)及解析
- 小学六年级上册期中英语模拟综合试卷测试题
- 初三中考英语宾语从句的语序练习题含答案及解析
- 2025-2026学年安徽省阜阳市临泉县二中高一上学期开学考地理试题及答案
- 粉尘涉爆培训题库及答案
- 2025国际汉语教师证书考试教学评估与反馈试卷及答案
- 2025年注册会计师财务成本管理考试真题及答案
- 2025年历年二建市政实务案例题及答案
- 2025年护理文件书写规范试题及答案
- 2025年各省银行招聘考试题库及答案
- 高速公路改扩建工程监理投标方案(技术方案)
- 突发性耳聋的中医辩证及护理方案
- T-SZEIA 001-2024 温室气体产品碳足迹量化方法与要求 变电站电气设备
- 2025年湖南省安全员-B证考试题库及答案
- 北师大版六年级下册数学全册同步分层作业设计含答案解析
- 简易钢结构雨棚施工承包合同范本
- 苏州市前期物业管理委托合同范本
- 2022年冀教版七年级上册数学第一次月考试卷
- 《气管支架临床应用》课件
- 8·12天津滨海新区爆炸事故调查报告分析及反思
- 2024新指南:中国阿尔茨海默病早期预防指南解读课件
评论
0/150
提交评论