湖北孝感高级中学高二数学调研_第1页
湖北孝感高级中学高二数学调研_第2页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感高级中学2019-2020学年高二数学9月调研试题注意事项:1答第卷前,考生务必将自己的姓名、考生号涂写在答题卡上。2选出答案后,用铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再填涂。其他答案,写在答题卡上,不能答在试卷上。一、选择题:(本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1不论为何值,直线恒过定点ABCD2已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A则 B,则C,则 D,则3圆和圆的公切线条数为( )A1B2C3D44已知数列满足,且,则=A B3 C D5如图所示,已知平面平面,且平面,则的形状为( )A锐角三角形B直角三角形C钝角三角形D不能确定6已知数列的前项和为,且满足,若,则的值为( )ABCD7已知等差数列的前n项和有最大值,且,则满足的最大正整数的值为( )A6B7C11D128已知点,直线方程为,且与线段相交,求直线的斜率k的取值范围为( )A或 B或 CD9等差数列的前n项和为,己知,则A110B200C210D26010边长为2的两个等边ABD,CBD所在的平面互相垂直,则四面体的外接球的表面积为( )A B C D11已知两个等差数列和的前n项和分别为和,且,则( )ABCD1512已知点,点是圆上的动点,点是圆上的动点,则的最大值为( )ABCD二、填空题:(本大题共4个小题,每小题5分,共20分请将答案填在答题卡上)13已知二面角的平面角是锐角,内一点到的距离为3,点C到棱的距离为4,那么的值等于 .14已知圆上到直线 (是实数)的距离为的点有且仅有个,则直线斜率的取值范围是_15公元前3世纪,古希腊数学家阿波罗尼斯在平面轨迹一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中,则满足的点的轨迹的圆心为 ,面积为 .16已知数列的前项和为,数列的前项和为,满足,且.若存在,使得成立,则实数的最小值为_三、解答题:(本大题共6个小题,共70分解答应写出文字说明,证明过程或演算步骤)17(10分)已知圆心的坐标为(1,1),圆与轴和轴都相切(1)求圆的方程;(2)求与圆相切,且在轴和轴上的截距相等的直线方程18(12分)单调递增数列的前项和为,且满足.(1)求数列的通项公式;(2)令,求数列的前项和.319( 12分)已知圆C:x2y2x2y0和直线l:xy10.(1)试判断直线l与圆C之间的位置关系,并证明你的判断;(2)求与圆C关于直线l对称的圆的方程20(12分)如图,在四棱锥中,平面,底面是棱长为的菱形,是的中点(1)求证:/平面;(2)求直线与平面所成角的正切值21(12分)已知数列的前项和为,已知,(1)设,求证:数列是等比数列,并写出数列的通项公式;(2)若对任意都成立,求实数的取值范围22(12分)已知动点与两个定点,的距离的比为.(1)求动点的轨迹的方程;(2)过点的直线与曲线交于、两点,求线段长度的最小值;(3)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共 点,求实数的取值范围.参考答案1B 2D 3B 4C 5B 6D 7C 8A 9C 10C11B 12D13 14 15 , 1617解析:(1)根据题意和图易知圆的半径为1,有圆心坐标为(1,1)故圆C的方程为:;(2)根据题意可以设所求直线方程截距式为整理得,直线与圆相切,圆心到直线的距离等于半径,故, 可得,所以直线方程为18解析: (1) , ,当时, ;当时, ,即,又单调递增, ,又也满足,(2),-得:,19解析:(1)直线l与圆C的位置关系是相离证明如下:由整理,得,即圆C的圆心,半径.圆心到直线l:xy10的距离,dr,即直线l与圆C相离(2)设圆心C关于直线l的对称点为C(x,y),则CC的中点在直线l上,且CCl,解得即对称圆的圆心为,对称圆的半径,方程为20解析:(1) 连接,交于点,连接,由底面是菱形,知是的中点,又是的中点, . 又平面,平面,平面;(2)取中点,连接,分别为的中点,平面,平面,直线与平面所成角为,.21解析:(1)由得:,即所以即又,是首项为,公比为的等比数列,且(2)解:由(1)知,由,得,代入后解得:恒成立又因为,所以,解得而当时,综上所述,22解析:(1)由题意知:设 则,即,所以,整理得.所以动点的轨迹的方程为.(2)由(1)知轨迹是以为圆心,以2为半径的圆.又因为,所以点在圆内,所以当线段的长度最小时,所以圆心到直线的距离为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论