




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,名师课件,6.1平方根(第一课时),(1)1020之间整数的平方,你都记得哪些?11=121,12=144,13=169,14=196,15=225,16=256,17=289,18=324,19=361.,(2)若a是有理数,则一定是非负数.,请你认真阅读课本p40内容,边学习边完成下列表格:,活动1,探究一:算术平方根的概念.,重点知识,1,3,4,6,已知“正方形面积求边长”的问题,实际上是“已知一个正数的平方,求这个正数”的问题,通过解决这个问题,我们就有了算术平方根的概念.,活动1,探究一:算术平方根的概念.,重点知识,算术平方根的概念:,一般地,如果一个正数x的平方为a,即x=a,那么正数x叫做a的算术平方根.,活动1,探究一:算术平方根的概念.,重点知识,算术平方根的表示方法:,a的算术平方根记为,读作“根号a”或“二次根号a”,其中a叫做被开方数.,规定:0的算术平方根是0,记作.,活动1,探究二:求一个非负数的算术平方根,重点、难点知识,初步运用:因为x=a,所以x=(x0),例1求下列各数的算术平方根.,(1)100(2)(3)0.0001(4),解析:(1)因为10=100,所以100的算术平方根是10,即.(2)因为,所以的算术平方根是,即.(3)因为0.01=0.0001,所以0.0001的算术平方根是0.01,即.(4)因为=,所以的算术平方根是,即.,方法总结:带分数记得要先化成假分数;,活动1,探究二:求一个非负数的算术平方根,重点、难点知识,初步运用:因为x=a,所以x=(x0),结论:被开方数大的数算术平方根也大.这个结论对所有非负数都成立.即(a0);(a0),活动2,探究二:求一个非负数的算术平方根,重点、难点知识,灵活运用:(a0);(a0),方法总结:此类型题目应注意:(a0);(a0),需强调的是a=0时对两种情况都成立.,例2.求下列各式的值:,(1)(2)(3)(4),解析:(1)(2)(3)(4),思考:4有算术平方根吗?-9,-36,-49呢?任意一个负数有算术平方根吗?,活动1,探究三:算术平方根的性质:双重非负性,负数不能写成某个数的平方,所以没有算术平方根.,归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根.即:只有非负数有算术平方根,如果x=有意义,那么a0,x0.这就是算术平方根的双重非负性.,巧用双重非负性,活动2,探究三:算术平方根的性质:双重非负性,方法总结:巧妙运用x=有意义,则a0,x0,可以解决综合性较强的题目.,例2.若,求a、b的值.,解析:因为,,所以要使它们的和等于0,则,.所以有5a+7=0,b-3=0即,.,知识梳理,基础知识思维导图,知识梳理,算术平方根的概念:一般地,如果一个正数x的平方为a,即x=a,那么正数x叫做a的算术平方根.,算术平方根的双重非负性:只有非负数有算术平方根,如果x=有意义,那么a0,x0.,算术平方根的表示方法:a的算术平方根记为,读作“根号a”或“二次根号a”,其中a叫做被开方数.规定:0的算术平方根是0,记作.,知识梳理,算术平方根的概念:一般地,如果一个正数x的平方为a,即x=a,那么正数x叫做a的算术平方根.算术平方根的表示方法:a的算术平方根记为,读作“根号a”或“二次根号a”,其中a叫做被开方数.规定:0的算术平方根是0,记作.,(1)在运用概念求算术平方根时,要保证被开方数是非负数,是带分数要先化成假分数,不是平方数形式的应先化成平方数。,重难点突破,(2)负数没有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 枣庄市政府专职消防员招聘考试真题2024
- 2025年资阳市法院系统招聘真题
- 2025江西南昌经济技术开发区社医服务工作人员招聘9人模拟试卷及答案详解(名师系列)
- 2025年青岛科技大学公开招聘人员(17人)模拟试卷及答案详解(全优)
- 2025河南郑州市建中街社区卫生服务中心招聘模拟试卷及完整答案详解一套
- 2025广西北流市山围镇卫生院招聘编外人员模拟试卷附答案详解
- 2025年安庆桐城市安徽安桐城乡发展集团有限公司招聘17人考前自测高频考点模拟试题及完整答案详解1套
- 2025年青岛市崂山区“崂选计划”第二批选聘(37名)模拟试卷附答案详解
- 2025贵州瓮安县瓮水街道招聘公益性岗位人员20人模拟试卷及参考答案详解1套
- 2025年滁州南谯城市投资控股集团有限公司招聘10人模拟试卷及一套完整答案详解
- 空间设计教学大纲 室内设计教学大纲(五篇)
- 促单技巧及话术大全
- 车辆司法鉴定申请书
- 塑料原料名称中英文对照表
- 二年级应用题大全800题二年级上册数学乘法应用题
- 第十四杂环化合物
- GB/T 5454-1997纺织品燃烧性能试验氧指数法
- GB/T 11186.2-1989涂膜颜色的测量方法第二部分:颜色测量
- 学校辍学学生劝返工作记录卡
- 第六讲:RCEP服务贸易与投资解读课件
- 初中数学人教七年级上册(2023年新编) 有理数专题《有理数中的数学思想》教学设计
评论
0/150
提交评论