

免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省2019年广州市普通高中毕业班综合测试(二)理科数学试题一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知复数z=m(3+i)-(2+i)在复平面内对应的点在第三象限,则实数m的取值范围是A. B. C. D. 【答案】B【解析】【分析】先化代数形式,再根据对应的点在第三象限列不等式,解得结果.【详解】,选B.【点睛】本题考查复数几何意义,考查基本分析求解能力,属基础题.2.己知集合A=,则A. x|x2或x6B. x|x2或x6C. x|x0,n0)上,则的最小值为A. 4B. 3+2C. 6+4D. 8【答案】C【解析】【分析】先求A点坐标,再根据基本不等式求最值.【详解】设,则或,即或因为在上,所以,即,从而,当且仅当时取等号,即的最小值为,选C.【点睛】本题考查导数几何意义以及基本不等式求最值,考查基本分析求解能力,属中档题.10.函数 的部分图像如图所示,先把函数图像上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的图像向右平移个单位长度,得到函数的图像,则函数的图像的一条对称轴为( )A. B. C. D. 【答案】C【解析】【分析】先根据图象求,再根据图象变换得,最后根据正弦函数性质求对称轴.【详解】由图得,从而,,选C.【点睛】本题考查由图象求函数解析式、三角函数图象变换以及正弦函数性质,考查基本分析求解能力,属中档题.11.已知点在直线上,点在直线上,的中点为,且,则的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】先确定所在直线,再根据,得轨迹为一条线段,最后根据斜率公式求结果.【详解】因为点在直线上,点在直线上,所以M在直线上,即,因为,所以轨迹为一条线段AB,其中,因此的取值范围为,选B.【点睛】本题考查线性规划求范围,考查基本分析求解能力,属中档题.12.若点与曲线上点的距离的最小值为,则实数的值为( )A. B. C. D. 【答案】D【解析】【分析】先设切点B,再根据导数几何意义以及最值列式解得实数的值.【详解】因为,所以由题意得以A为圆心,为半径的圆与曲线相切于点B,设,则在B点处切线的斜率为,所以,选D.【点睛】本题考查利用导数求函数最值,考查综合分析求解能力,属难题.二、填空题:本题共4小题,每小题5分,共20分13.若e1,e2是夹角为60的两个单位向量,向量a=2e1+e2,则|a|= _【答案】【解析】【分析】根据向量数量积求模.【详解】因为,所以.【点睛】本题考查利用向量数量积求模,考查基本分析求解能力,属基本题.14.若的展开式中的系数是80,则实数的值是_.【答案】2【解析】解:因为展开式的的系数为80,则说明,故a=2.15.秦九韶是我国南宋著名数学家,在他的著作数书九章中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”如果把以上这段文字写成公式就是,共中,是的内角,的对边为.若,且,1,成等差数列,则面积的最大值为_.【答案】【解析】【分析】先根据正弦定理得,再根据余弦定理化简得【详解】因为,所以,因此,因为,1,成等差数列,所以+=2,因此,即面积的最大值为.【点睛】本题考查正余弦定理以及二次函数性质,考查基本分析求解能力,属中档题.16.有一个底面半径为,轴截面为正三角形的圆锥纸盒,在该纸盒内放一个棱长均为的四面体,并且四面体在纸盒内可以任意转动,则的最大值为_.【答案】【解析】【分析】先求圆锥内切球半径,再根据取最大值时,四面体外接球恰为圆锥内切球,解得结果.【详解】设圆锥内切球半径为,则,所以,因为取最大值时,正四面体外接球恰为圆锥内切球,所以,解得.【点睛】本题考查圆锥内切球以及正四面体外接球,考查基本分析求解能力,属中档题.三、解答题:共70分,解答应写出文字说明、证明过程和演算步骤,第1721题为必考题,每个试题考生都必须做答第22、23题为选考题,考生根据要求做答(一)必考题:共60分17.己知an是递增的等比数列,a2+a3 =4,ala4=3 (1)求数列an的通项公式; (2)令bn=nan,求数列bn的前n项和Sn【答案】(1); (2).【解析】【分析】(1)列方程组解得公比与首项即可,(2)利用错位相减法求和.【详解】(1)设等比数列公比为,因为,所以 解得 或 因为是递增的等比数列,所以, 所以数列的通项公式为 解法2:(1)设等比数列的公比为,因为,所以,是方程的两个根解得或因为是递增的等比数列,所以,则所以数列的通项公式为(2)由(1)知 则, 在式两边同时乘以得, -得,即, 所以【点睛】本题考查等比数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:根据上表的数据得到如下的散点图 (1)根据上表中的样本数据及其散点图: (i)求; (ii)计算样本相关系数(精确到0.01),并刻画它们的相关程度 (2)若y关于x的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量。附:参考数据: 参考公式:相关系数 回归方程中斜率和截距的最小二乘估计公式分别为【答案】(1)(i)()可以推断人体脂肪含量和年龄的相关程度很强; (2)根据回归方程预测年龄为岁时人的脂肪含量为%.【解析】【分析】(1)(i)根据平均数公式求解()先根据公式求,再作判断,(2)根据求,将代入线性回归方程得估计值.【详解】(1)根据上表中的样本数据及其散点图:()() 因为,所以 由样本相关系数,可以推断人体脂肪含量和年龄的相关程度很强 (2)因为回归方程为,即所以【或利用 】所以关于的线性回归方程为将代入线性回归方程得 所以根据回归方程预测年龄为岁时人的脂肪含量为%【点睛】本题考查平均值以及线性回归方程,考查基本分析求解能力,属基础题.19.如图,在四棱锥中,底面为菱形,且.(1)求证:平面平面;(2)若,求二面角的余弦值.【答案】(1)见解析; (2).【解析】分析】(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【详解】(1)证明:取中点,连结,因为底面为菱形,所以 因为为的中点,所以 在中, 为的中点,所以设,则,因为,所以 在中,为的中点,所以在 和 中,因为,所以 所以所以 因为,平面,平面,所以平面因为平面,所以平面平面 (2)因为,平面,平面,所以平面所以 由(1)得,所以,所在的直线两两互相垂直以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系 设,则, 所以,设平面的法向量为,则 令,则,所以 设平面的法向量为,则 令,则,所以设二面角为,由于为锐角,所以 所以二面角的余弦值为 【点睛】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.20.在平面直角坐标系中,动点分别与两个定点,的连线的斜率之积为.(1)求动点的轨迹的方程;(2)设过点的直线与轨迹交于,两点,判断直线与以线段为直径的圆的位置关系,并说明理由.【答案】(1) ; (2)相离.【解析】【分析】(1)根据直接法求轨迹方程,(2)先用坐标表示以线段为直径的圆方程,再根据圆心到直线距离与半径大小进行判断.【详解】(1)设动点的坐标为,因为 , , 所以,整理得 所以动点的轨迹的方程 (2)过点的直线为轴时,显然不合题意 所以可设过点的直线方程为, 设直线与轨迹的交点坐标为 ,由得 因为,由韦达定理得 =, = 注意到 =所以的中点坐标为 因为 点到直线的距离为 因为 ,即 ,所以直线与以线段为直径的圆相离【点睛】本题考查直接法求轨迹方程以及直线与圆位置关系,考查基本分析求解能力,属中档题.21.已知函数(1)讨论函数f(x)的单调性;(2)若函数f(x)有两个零点xl,x2,求k的取值范围,并证明【答案】(1)当时,函数在上单调递增;当时,函数在上单调递减,在上单调递增; (2)见解析.【解析】【分析】(1)先求导数,再根据导函数零点及其符号确定单调性,(2)先根据函数图象确定有两个零点的条件,即得k的取值范围;令,构造函数,将不等式证明问题转化为证明函数最值问题,再利用导数求函数最值即可.【详解】(1)解:因为,函数的定义域为,所以当时,所以函数在上单调递增 当时,由,得(负根舍去),当时,当时,所以函数在上单调递减;在上单调递增 综上所述,当时,函数在上单调递增;当时,函数在上单调递减,在上单调递增 (2)先求的取值范围:由(1)知,当时,在上单调递增,不可能有两个零点,不满足条件当时,函数在上单调递减,在上单调递增,所以,要使函数有两个零点,首先,解得 因为,且,下面证明设,则因为,所以所以在上单调递增,所以 所以的取值范围是 再证明:因为,是函数的两个零点,不妨设,令,则所以即所以,即,要证,即证 即证,即证因为,所以即证,或证 设,即,所以所以在上单调递减, 所以 所以【点睛】本题考查利用导数求函数单调性以及证不等式,考查综合分析论证与分类讨论能力,属难题.22.在直角坐标系中,倾斜角为的直线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)若直线与曲线交于,两点,且,求直线倾斜角.【答案】(1) ; (2) 或.【解析】【分析】(1)根据平方关系消参数得直线的普通方程,根据得曲线的直角坐标方程(2)利用直线参数方程几何意义求解.【详解】(1)因为直线的参数方程为(为参数),当时,直线的直角坐标方程为 当时,直线的直角坐标方程为 因为, 因为,所以所以的直角坐标方程为 (2)解法1:曲线的直角坐标方程为,将直线的参数方程代入曲线的方程整理,得因为,可设该方程的两个根为,则 ,所以 整理得,故因为,所以或,解得或综上所述,直线的倾斜角为或 解法2:直线与圆交于,两点,且,故圆心到直线的距离 当时,直线的直角坐标方程为,符合题意 当时,直线的方程为所以,整理得解得综上所述,直线的倾斜角为或【点睛】本题考查参数方程化普通方程、极坐标方程化直角坐标方程以及直线参数方程应用,考查综合分析求解能力,属中档题.23.选修4-5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理质量管理制度
- 安全教育夹手事故防范与应对
- 消化内科出科感悟
- 物业开放日活动方案
- 绿色农业技术推广存在的问题及对策探究
- 婚姻解除后彩礼及财产分割标准协议书
- 翻译保密协议旅游攻略笔译保密合同
- 茶园土地流转与农业循环经济发展合作合同
- 车贷保险兼担保服务合同
- 竞业限制保密协议模板金融行业
- 国开学习网《数据库运维》形考任务1-3答案
- 2023年中国医学科学院基础医学研究所高等学校招聘笔试真题
- 华南理工大学《论文写作与学术规范》2021-2022学年第一学期期末试卷
- 2025年中考数学热点题型归纳与变式演练(全国)专题09 几何最值问题(原卷版)
- 六年级20道说理题
- 两个女儿断绝关系协议书范文
- 备品备件保障方案
- OCEAN脚本简明教程
- 幼儿教师专业成长支持体系构建研究
- 举一反三系列高考高中数学同步及复习资料人教A版必修1专题5.15 三角函数的图象与性质的综合应用大题专项训练(30道)(含答案及解析)
- CSTM-窗口晶体 紫外级氟化钙晶体编制说明
评论
0/150
提交评论