公式法解一元二次方程的教学设计及反思_第1页
公式法解一元二次方程的教学设计及反思_第2页
公式法解一元二次方程的教学设计及反思_第3页
公式法解一元二次方程的教学设计及反思_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

公式法解一元二次方程的教学设计及反思寿县涧沟初级中学:胡德云 一、学情分析:本节是在学生已经掌握了配方法解一元二次方程的基础上,从问题入手,推导求根公式,并能用公式法解简单系数的一元二次方程。二、教学目标: 1、使学生熟练地应用求根公式解一元二次方程。 2、使学生经历探索求根公式的过程,培养学生抽象思维能力。 3、在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。三、教学方法:指导探究发现法四、教学过程:一、复习旧知,提出问题 导入新课 1、用配方法解下列方程:(1) x2+15=10x (2)3x2-12x+9=02、用配方解一元二次方程的步骤是什么? 3、通过作业及练习深刻地体会到由配方法求方程的解有时计算起来很麻烦,每求一个一元二次方程的解,都要实施配方的步骤,进行较复杂的计算,这必然给方程的解的正确求出带来困难能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、探索求根公式能否用配方法将一般形式的一元二次方程ax2+bx+c = 0(a0)转化呢? 教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识:用配方法求一元二次方程ax2bxc0(a0)的根(一)一元二次方程a2+bx+c0(a0)的根是由一元二次方程的系数a、b、c确定的。(二)在解一元二次方程时,可先把方程化为一般形式,然后在b24ac0的前提下,把a、b、c的值代入求根公式中,可求得方程的两个根。过程在此略。思考:当b24ac0时,方程有实数根吗? 三、讲解例题 例、解下列方程: 2x2+x6 = 0; x2+4x = 2; 5x24x12 = 0; 4x2+4x+10 = 18x 教学要点:(1)对于方程和,首先要把方程化为一般形式; 强调确定a、b、c值时,不要把它们的符号弄错; 先计算b24ac的值,再代入公式。四、巩固练习1、x24x2 2、6t2 -5 =13t3、x - x -1= 0 4、2x - 4x+2= 05、3x(x-3)=2(x-1)(x+1) 6、4x2-3x-1=x-2五、小结: 公式法是解一元二次方程的通法,是配方法的延续,它实际上是配方法的一般化和程式化,利用它可以更为简捷地解一元二次方程。因为掌握求根公式的关键是掌握公式的推导过程,而掌握推导过程的关键又是掌握配方法,所以在教学中,首先引导学生自主探索一元二次方程的求根公式,然后在师生共同的讨论中,得到求根公式,并利用公式解一些简单的数字系数的一元二次方程。教学反思:利用求根公式解一元二次方程的一般步骤: 1、 找出a,b,c的相应的数值2、验判别式是否大于等于03、当判别式的数值符合条件,可以利用公式求根在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:1、 a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号。 2、求根公式本身就很难,形式复杂,直接代入数值后出错很多。 其实在做题过程中检验一下判别式这一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。板书设计:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论