高三数学寒假作业16概率与统计学_第1页
高三数学寒假作业16概率与统计学_第2页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(寒假总动员)2015年高三数学寒假作业 专题16 概率与统计(学)学一学-基础知识结论1频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率2事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA且ABAB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,则称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件ABP(AB)P(A)P(B)13.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)互斥事件概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B)若事件B与事件A互为对立事件,则P(A)1P(B)学一学-方法规律技巧两个区别一是“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件,如(5)中为互斥事件二是“频率”与“概率”:频率与概率有本质的区别,不可混为一谈频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就可以近似地当作随机事件的概率.4基本事件的特点(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和5古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型3古典概型的概率公式P(A).学一学-方法规律技巧1一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.2从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I,基本事件的个数n就是集合I的元素个数,事件A是集合I的一个包含m个元素的子集,故P(A).学一学-方法规律技巧1一个区别“几何概型”与“古典概型”的区别:基本事件的个数前者是无限的,后者是有限的2一点提醒几何概型的试验中,事件A的概率P(A)只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.7离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量8离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一个值xi(i1,2,n)的概率P(Xxi)pi,则表Xx1x2xixnPp1p2pipn称为离散型随机变量X的概率分布列(2)离散型随机变量的分布列的性质pi0(i1,2,n);p1p2pn19常见离散型随机变量的分布列(1)两点分布:若随机变量X服从两点分布,其分布列为X01P1pp,其中pP(X1)称为成功概率 (2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(Xk),k0,1,2,m,其中mminM,n,且nN,MN,n,M,NN*,称随机变量X服从超几何分布.X01mP学一学-方法规律技巧1离散型随机变量的特点一是在试验之前不能断言随机变量取什么值,即具有随机性;二是在大量重复试验中能按一定统计规律取值的变量,即存在统计规律性,如(1)、(3)2分布列的两条性质离散型随机变量的分布列指出了随机变量X的取值范围以及取各值的概率,如(6);要理解两种特殊的概率分布两点分布与超几何分布,如(4)、(5);并善于灵活运用两性质:一是pi0(i1,2,);二是p1p2pn1检验分布列的正误,如(2)10条件概率及其性质条件概率的定义条件概率的性质设A,B为两个事件,且P(A)0,称P(B|A)为在事件A发生的条件下,事件B发生的条件概率(1)0P(B|A)1(2)若B,C是两个互斥事件,则P(BC|A)P(B|A)P(C|A)11.事件的相互独立性设A,B为两个事件,如果P(AB)P(A)P(B),则称事件A与事件B相互独立若事件A,B相互独立,则P(B|A)P(B);事件A与,与B,与都相互独立12独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,若用Ai(i1,2,n)表示第i次试验结果,则P(A1A2A3An)P(A1)P(A2)P(A3)P(An)(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(Xk)Cpk(1p)nk(k0,1,2,n),此时称随机变量X服从二项分布,记为XB(n,p),并称p为成功概率 (2)正态总体三个基本概率值P(X)0.682_6.P(2X2)0.954_4.P(3X3)0.997_4.学一学-方法规律技巧1古典概型中,A发生的条件下B发生的条件概率公式为P(B|A),其中,在实际应用中P(B|A)是一种重要的求条件概率的方法2P(AB)P(A)P(B)只有在事件A、B相互独立时,公式才成立,此时P(B)P(B|A),如(1),(2)3判断一个随机变量是否服从二项分布,要看两点:一是是否为n次独立重复试验在每次试验中事件A发生的概率是否均为p.二是随机变量是否为在这n次独立重复试验中某事件发生的次数且P(Xk)Cpk(1p)nk表示在独立重复试验中,事件A恰好发生k次的概率.例1.一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()AA与B是互斥而非对立事件 BA与B是对立事件CB与C是互斥而非对立事件 DB与C是对立事件例2. 将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2y215的外部或圆上的概率例3. (2013天津卷)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论