




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,九年级数学(下)第三章圆,2.圆对称性(1)垂径定理,.,2,圆的对称性,圆是轴对称图形吗?,驶向胜利的彼岸,如果是,它的对称轴是什么?你能找到多少条对称轴?,你是用什么方法解决上述问题的?,圆是中心对称图形吗?,如果是,它的对称中心是什么?你能找到多少条对称轴?,你又是用什么方法解决这个问题的?,.,3,圆的对称性,圆是轴对称图形.,驶向胜利的彼岸,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,可利用折叠的方法即可解决上述问题.,圆也是中心对称图形.,它的对称中心就是圆心.,用旋转的方法即可解决这个问题.,.,4,圆的相关概念,圆上任意两点间的部分叫做圆弧,简称弧.,直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).,驶向胜利的彼岸,连接圆上任意两点间的线段叫做弦(如弦AB).,经过圆心弦叫做直径(如直径AC).,.,5,AM=BM,垂径定理,AB是O的一条弦.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,驶向胜利的彼岸,作直径CD,使CDAB,垂足为M.,右图是轴对称图形吗?如果是,其对称轴是什么?,小明发现图中有:,由CD是直径,CDAB,.,6,垂径定理,如图,小明的理由是:,连接OA,OB,驶向胜利的彼岸,则OA=OB.,在RtOAM和RtOBM中,OA=OB,OM=OM,,RtOAMRtOBM.,AM=BM.,点A和点B关于CD对称.,O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,.,7,垂径定理三种语言,定理垂直于弦的直径平分弦,并且平分弦所的两条弧.,老师提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.,驶向胜利的彼岸,CDAB,如图CD是直径,AM=BM,.,8,CDAB,垂径定理的逆定理,AB是O的一条弦,且AM=BM.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,驶向胜利的彼岸,过点M作直径CD.,右图是轴对称图形吗?如果是,其对称轴是什么?,小明发现图中有:,由CD是直径,AM=BM,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.,.,9,你可以写出相应的命题吗?相信自己是最棒的!,垂径定理的逆定理,如图,在下列五个条件中:,只要具备其中两个条件,就可推出其余三个结论.,驶向胜利的彼岸,CD是直径,AM=BM,CDAB,.,10,垂径定理及逆定理,驶向胜利的彼岸,垂直于弦的直径平分弦,并且平分弦所的两条弧.,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.,平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.,弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.,垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.,平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.,平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.,.,11,挑战自我垂径定理的推论,如果圆的两条弦互相平行,那么这两条弦所平的弧相等吗?,老师提示:这两条弦在圆中位置有两种情况:,驶向胜利的彼岸,垂径定理的推论圆的两条平行弦所夹的弧相等.,.,12,驶向胜利的彼岸,挑战自我画一画,如图,M为O内的一点,利用尺规作一条弦AB,使AB过点M.并且AM=BM.,.,13,驶向胜利的彼岸,挑战自我填一填,1、判断:垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()经过弦的中点的直径一定垂直于弦.()圆的两条弦所夹的弧相等,则这两条弦平行.()弦的垂直平分线一定平分这条弦所对的弧.(),.,14,驶向胜利的彼岸,挑战自我画一画,2.已知:如图,O中,弦ABCD,ABCD,直径MNAB,垂足为E,交弦CD于点F.图中相等的线段有:.图中相等的劣弧有:.,.,15,驶向胜利的彼岸,挑战自我画一画,3、已知:如图,O中,AB为弦,C为AB的中点,OC交AB于D,AB=6cm,CD=1cm.求O的半径OA.,.,16,驶向胜利的彼岸,挑战自我画一画,4.如图,圆O与矩形ABCD交于E、F、G、H,EF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军事理论-综合版(旧版)知到智慧树答案
- 汉字一到十的课件
- 2024年秋新北师大版数学一年级上册课件 第一单元 生活中的数 第2课时 走进美丽乡村
- 水闸防洪防汛安全知识培训
- 通风系统安装与调试方案
- 水画课件观看体验
- 用户体验设计55课件
- 二零二五年度地下工程照明设备采购合同范本
- 2025版附还款来源保证的流动资金借款合同
- 二零二五年度电子商务平台建设合同补充协议
- QC新老七大工具培训课件
- SX-22163-QR345工装维护保养记录
- JJF 2025-2023高动态精密离心机校准规范
- 2023年航空职业技能鉴定考试-候机楼服务技能考试题库(含答案)
- 医院腹腔镜手术知情同意书
- p型半导体和n型半导体课件
- GB/T 748-2005抗硫酸盐硅酸盐水泥
- 走好群众路线-做好群众工作(黄相怀)课件
- 混凝土结构设计原理教学教案
- 民间文学(全套课件)
- 专升本00465心理卫生与心理辅导历年试题题库(考试必备)
评论
0/150
提交评论