

免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
随机变量及其概率分布、均值与方差复习知识要点:1随机变量的概率分布表2.两点分布3.超几何分布:4.条件概率:5.事件的独立性:6.二项分布:7.离散型随机变量的均值、方差课前预习:1已知随机变量X只能取这4个值,其相应的概率依次为则常数_2在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,第一次摸出红球的条件下,第二次也摸出红球的概率为_3将3个骰子全部掷出,设出现6点的骰子的个数为X,则=_4若事件与相互独立,且,则=_典型例题:例1:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球现从甲、乙两个盒内各任取2个球(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望例2:甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.(1)求随机变量分布列和数学期望;(2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB) 例3:某批产品成箱包装,每箱5件一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品(1)用表示抽检的6件产品中二等品的件数,求的分布列及的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率江苏省泰兴中学高二数学课后作业(82) 班级:_ 姓名:_ 学号: 1已知随机变量,则_2已知随机变量的分布列为P(=k)=,k=1,2,则P(24)等于_3甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 4100个乒乓球中,有5只是不合格的,现从中抽取10只,用X表示次品数,则_(只需列式)5某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.6,现在一只10岁的这种动物,它能活到15岁的概率为_6已知事件A与事件B互斥,且则_7已知离散型随机变量的分布列如下表若,则 , X-1012Pabc8若随机变量A在一次试验中发生的概率为p(0p1),用随机变量表示A在1次试验中发生的次数,则(1)方差的最大值=_;(2)的最大值=_9某运动员射击一次所得环数x的分布列如下:x0-678910p00. 20. 30. 30. 2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为 (1) 求该运动员两次都命中7环的概率;(2) 求分布列;(3) 求的数学期望.10. 甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用表示甲队的总得分.(1)求随机变量分布列和数学期望;(2)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).11一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.(1)若袋中共有10个球,(i)求白球的个数;(ii)从袋中任意摸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年定期保洁服务用工合同范本
- 2025版体育赛事居间组织合同体育产业发展与风险防范
- 2025版汽车石材运输及装卸服务合同范本
- 2025版智能便利店合伙人合作协议及供应链管理细则
- 2025版能源企业人力资源派遣与电力运维服务协议
- 2025版蔬菜产业投资基金合作协议
- 2025版企业人力资源信息系统建设咨询合同
- 2025年度企业财务外包服务与财务信息化升级合同
- 2025版智能交通管理系统承包合同范本下载
- 2025年度蔬菜种植基地与农产品检测机构合作协议
- 原材料不合格品处理流程
- 秀米推文培训课件
- 阜外体外循环手册
- 天津市红桥区2024-2025学年七年级上学期10月期中考试语文试题
- DB11T 856-2012 门牌、楼牌 设置规范
- 40m预制箱梁汽车吊双机台吊专项方案(经典)
- 2024年公开招聘事业单位工作人员报名登记表
- 全国人力资源和社会保障法律法规知识网络竞赛题及答案
- GB/T 44335-2024精细陶瓷涂层试验方法基于Stoney公式的陶瓷涂层内应力测定
- 水电站进水口启闭机排架结构及配筋计算书
- 《大学英语四级强化教程》全套教学课件
评论
0/150
提交评论