

已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(文)试题一、选择题(每题5分,共60分)1.( )A. B. C. D. 【答案】C【解析】分析:利用诱导公式即可得出.详解:.点睛:三角函数诱导公式记忆有一定规律:奇变偶不变,符号看象限,诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成(2)转化为锐角三角函数.2.若为第二象限角,则A. B. C. D. 【答案】A【解析】【分析】利用诱导公式求得,再根据为第二象限角求出 最后根据同角三角函数基本关系式可得.【详解】 ,又为第二象限角, 则 故选A.【点睛】本题考查诱导公式,同角三角函数基本关系式的应用,属基础题.3.下列命题中正确的是( )A. 终边在轴负半轴上的角是零角B. 三角形的内角必是第一、二象限内的角C. 不相等的角的终边一定不相同D. 若(),则与终边相同【答案】D【解析】对于答案A,因为终边落在轴负半轴上的角可以表示为,故说法不正确;对于答案B,由于直角也是三角形的内角,但不在第一、第二象限,故也不正确;对于答案C,由于,但其终边相同,所以也不正确,应选答案D。4.设扇形的周长为,面积为,则扇形的圆心角的弧度数是 ( )A. 1 B. 2 C. 3 D. 4【答案】B【解析】【分析】设扇形的半径为,弧长为,则根据周长及面积联立方程可求出,再根据即可求出.【详解】设扇形的半径为,弧长为,则,解得,所以 , 故选B.【点睛】本题主要考查了扇形的面积公式,弧度角的定义,属于中档题.5.若角,则角的终边落在( )A. 第一或第三象限 B. 第一或第二象限C. 第二或第四象限 D. 第三或第四象限【答案】A【解析】【分析】利用和时确定角终边所在的象限,利用排除法即可得结果.【详解】,当时,此时为第一象限角,排除;当时,此时是第三象限角,排除;角的终边落在第一或第三象限角,故选A.【点睛】本题主要考查角的终边所在象限问题,以及排除法做选择题,属于简单题.6.已知sincos,(0,),则tan( )A. 1 B. C. D. 1【答案】A【解析】由sincossin,(0,),解得,所以tantan17.若,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】根据诱导公式化简可得,再利用同角三角函数的基本关系可知,即,分析角的范围即可得解.【详解】因为 ,所以,当x在第一象限时,满足,当x在第二象限时, 即可,又,所以,当x在第三象限时,不符合题意,当x在第四象限时,即可,又,所以,综上选D.【点睛】本题主要考查了同角三角函数的基本关系,诱导公式,正弦函数与余弦函数的图象与性质,属于中档题.8.已知,则的大小关系是( )A. B. C. D. 【答案】A【解析】【分析】由诱导公式可知,根据特殊角的三角函数值比较大小即可.【详解】根据诱导公式,化简可得 ,所以,故选A.【点睛】本题主要考查了诱导公式,特殊角的三角函数值,属于中档题.9.已知,则=( )A. B. C. D. 【答案】C【解析】【分析】由诱导公式可得,再由条件求得结果【详解】故选【点睛】本题主要考查了诱导公式的应用,注意角之间的转化,属于基础题。10.设,且,则等于A. 2 B. C. 8 D. 【答案】C【解析】【分析】由题意利用诱导公式求得 asin+bcos=3,再利用诱导公式求得f(2019)的值【详解】即而=8故选:C【点睛】本题主要考查诱导公式的应用,体现了整体的思想,属于基础题11.已知函数,若将它的图象向右平移个单位长度,得到函数的图象,则函数图象的一条对称轴方程为( )A. B. C. D. 【答案】C【解析】由题意知,令,解得,当时,即函数的图象的一条对称轴的方程为.本题选择C选项.12.函数的图象与函数的图象所有交点的横坐标之和等于( )A. 18 B. 14 C. 16 D. 12【答案】D【解析】由于函数的图象与函数的图象都关于直线对称,因此在同一平面直角坐标系中画出函数的图象与函数的图象如图,在对称轴的右边共有六个交点,依据对称性在对称轴的左边也有六个交点,其关于直线对称的两根之和等于,则十二个根之和为,应选答案D。点睛:解答本题的关键是借助函数的周期性和对称性,巧妙运用图像的交点的横坐标就是方程的解,运用对称性确定“关于直线对称的两根之和等于”,从而求出所有实数根的和而获解。二、填空题(每题5分,共20分)13.已知角终边经过点,则_【答案】【解析】角终边经过点,故答案为14.函数的定义域为_【答案】【解析】根据题意有,有,解得,故定义域为.15.设函数,若对任意的实数x都成立,则的最小值为_【答案】【解析】【分析】由题可知,当时函数取最大值,根据余弦函数取最大值条件解得,进而确定其最小值.【详解】因为对任意的实数x都成立,所以,当时函数取最大值,所以因为,所以当时,取最小值为.故答案为.【点睛】本题考查三角函数的最值的求法与应用,考查转化思想以及计算能力.16.函数,下列四个命题是以为周期的函数 的图象关于直线对称当且仅当,取得最小值-1当且仅当时,正确的是_(填正确序号)【答案】【解析】【分析】由题意作出此分段函数的图象,由图象研究函数的性质,依据这些性质判断四个命题的真假,由函数取自变量相同时函数值小的那一个,由此可以作出函数图象【详解】由题意函数作出在上的图象,如图所示由图象可知,函数的最小正周期为,故错误;由图象可知,函数图象关于直线对称,故正确;在和时,该函数都取得最小值-1,故错误;在时,故正确.综上,正确的命题为故答案为【点睛】本题主要考查了三角函数图像的性质,解答了三角函数的周期性、对称性、最值等知识点,在解题过程中掌握解题方法,熟练画出函数图像。三、解答题(17题10分,其余每题12分,共70分 )17.已知角的终边过点,且,求和的值.【答案】,【解析】试题分析:利用任意角的三角函数定义,根据点的坐标表示求解b,再根据点坐标求和的值即可.试题解析:因为,所以,所以, 又,所以,所以,所以,.18.已知,(1)求的值; (2)求;【答案】(1) .(2) .【解析】试题分析:(1)去分母化简得,再根据同角三角函数关系得(2)先根据诱导公式化简,再根据弦化切得,最后代入求值试题解析:(1)由已知, 化简得,整理得 故 (2) 又 上式可化简为 .点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.19.已知函数的最大值为,最小值为.(1)求a,b的值;(2)若,求函数在区间上的值域。【答案】(1) ; (2) .【解析】试题分析:(1)根据余弦函数的性质可分别表示出函数的最大值和最小值,进而联立方程组得 和 的值;(2)根据(1)中求得 和 的值,得到函数的解析式,根据的范围确定的范围,利用正弦函数的性质结合图象可求得函数的最大值和最小值,进而可得函数 在区间 上的值域.试题解析:(1)由于 ,则 ,所以(2) 由(1)得 ,因为 ,所以 ,所以 ,所以 ,所以 在 上的值域为 .20.已知函数()的最小正周期为,且其图象关于直线对称.(1)求和的值;(2)若, ,求的值.【答案】(1) (2) 【解析】【分析】(1)由最小正周期为求出的值,再由图象关于直线对称求出的值(2)代入求出的表达式,化简,用已知角表示未知角,运用同角三角函数关系求出结果【详解】函数()的最小正周期为,图象关于直线对称,则,.【点睛】本题主要考查了求三角函数解析式,由已知条件中的周期性和对称性即可计算出结果,还考查了同角三角函数的关系,解题时用已知角表示未知角,然后再计算出结果。21.已知(1)求函数的单调增区间和对称中心;(2)判断函数在上的单调性。【答案】(1)增区间 对称中心 (2)增区间;减区间【解析】【分析】由问题代入计算以及得到结果结合(1)判断在的单调性【详解】则单调增区间为增区间为 则对称中心为:令,对称中心为 由可得当时,函数单调递增函数在区间上的增区间为,减区间为【点睛】本题主要考查了三角函数的单调性和对称性,在求解过程中整体代入求出结果,需要掌握此类题目的解题方法。22.已知函数.(1)当=1时,求该函数的最大值;(2)是否存在实数,使得该函数在闭区间上的最大值为1 ? 若存在,求出对应的值;若不存在,试说明理由.【答案】(1)(2)【解析】【分析】(1)当=1时, ,结合三角函数的有界性可得结果;(2),根据二次函数对称轴的位置,分类讨论,结合函数的单调性可得结果.【详解】(1)当=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版社区建设捐赠合同范本
- 二零二五年度城市绿化工程连带责任保证方式担保合同
- 2025版建筑垃圾运输合同范本环境友好型运输
- 2025版电动伸缩门研发、生产及销售合作协议
- 二零二五年度购物卡线上线下跨区域合作合同
- 二零二五年度高端白酒品牌独家代理销售合同
- 二零二五年度干挂石材施工项目合同范本(含监理)
- 二零二五版光伏发电项目临时房屋租赁管理合同
- 2025版高速公路路面摊铺与交通安全设施配套合同
- 2025版二手房买卖合同附带房屋交易过程中的装修押金退还条款范本
- 北京市东城区2024-2025学年高二下学期期末统一检测数学试卷【含答案解析】
- 普速铁路信号维护规则业务管理
- (2025年)海南省三亚市【辅警协警】笔试真题含答案
- 架桥机安拆专项施工方案 (三)
- 2025年4月自考03346项目管理试题
- 因公出国人员行前培训
- 滴灌施肥技能培训课件
- 胶原蛋白培训课件
- 2025至2030中国科研服务行业发展趋势分析与未来投资战略咨询研究报告
- 肿瘤患者的临终关怀及护理
- 2025年6月浙江省高考地理试卷真题(含答案解析)
评论
0/150
提交评论