




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三节电磁场的边值关系,麦克斯韦方程可应用于任何连续介质的内部。 在两介质的界面上,一般出现面电荷电流分布,物理量发生飞跃性变化,因此微分形式的Michael方程式不再适用。 2、电场作用下,介质界面一般出现面约束电荷和电流分布,这些电荷电流的存在使界面两侧的电场量发生飞跃性变化。 因此,界面两侧的电场强度和界面的电荷电流的关系必须用不同的形式来表现。 另外,图3 (b )的b):是将电荷激励的情况与外场E0重叠而得到总电场的图。 两侧的电场E1和E2在界面迁移。 此外,在图33 a至36 c中的介质和真空之间的边界的情况下,外场E0的作用在介质界面处产生表面约束电荷,并且由约束电荷本身激发的电场在介质中的方向与E0相反,在真空中方向与E0相同。 另外,边缘值的关系是记述两侧的场量和界面处的电荷电流的关系。 场量飞跃变化的原因是面电荷电流激发附加的电磁场,但积分形式的迈克尔方程式适用于任意不连续分布的电荷电流激发的场,因此研究边缘值关系的基础是积分形式的迈克尔方程式。 5、另一方面,法线分量的变迁Michel方程的积分形式是If或穿过曲面s的总自由电流,Qf或闭合曲面内的总自由电荷。 将该方程应用于接口,可以得到两侧场量的关系。 6、总场的迈克尔方程应用于两介质边界的扁平柱体。 上式左边的面积分为柱体的上下底和侧面,Qf和Qp分别为柱体内的总自由电荷和总束缚电荷,其等于对应的电荷面密度f和p乘以底面积s。 柱体的厚度为零时,向侧面的积分为零,向上下底面的积分为(E2nE1n )。 7、由于通过薄层的右侧面进入介质2的正电荷为p2ds,从介质1通过薄层的左侧进入薄层的正电荷为p2ds,因此在薄层中出现的净电荷为(p2p1)ds,用p约束电荷面密度,有,8,因此n为界面处从介质1朝向介质2的法线,通过二式相加, 极化矢量的跃迁与束缚电荷面密度相关,Dn的跃迁与自由电荷面密度相关,En的跃迁与总电荷面密度相关。 利用,实际上主要应用了与Dn相关的边缘值关系式,9,Dn的跃进式变化式是比较简单的从迈克尔逊方程式的积分形式直接得到的,因为侧面的积分为零,所以应用于扁平状区域,对于10,磁场b,在边界上的扁平状区域应用了积分形式的迈克尔逊方程式,11,2,切线成分的跃进式变化首先说明表面电流分布的概念。 单面电流分布,面电流实际上是靠近表面的相当大的分子层内电流的平均宏观效应,定义了12、电流线密度,其大小等于垂直通过单位横断线的电流。 如界面的一部分图示,存在面电流,其线密度为l横断线,垂直于l段流动的电流为13,存在面电流,因此,在界面的两侧磁场强度飞跃性地变化。 如图所示,接口的两侧形成细长环,环的一个长边位于介质1上,另一个长边位于介质2上。 长边l与面电流正交。 2切线成分的飞跃,在细长的电路上应用主方程式,14,深入到道路下方足够的分子层内部,使面电流完全通过电路内部。 在宏观上可以认为电路短边的长度接近于零,因此t表示沿l的切线分量。 通过电路内的总自由电流是15,电路周围的面积变为0,但是d/t是有限的,因此可以用代入、取得、16,上式或矢量形式来表示。 将l作为接口的第一线元,将t作为l方向的单位向量。 流过l的自由电流对于细长电路得到,因为17,l是界面的任意向量,因此上式进一步乘以n向量,表示注意磁场相切分量的边缘值关系,/界面上投影的向量,18该式表示界面两侧e的切线分量连续。可以得到电场切线成分的边值的关系:同样,应用,19,以后的公式中出现的和,除特别宣言者外,表示自由电荷面密度和自由电荷线密度,方标f不能写。 总结我们得到的边值关系,该方程和麦氏方程的积分公式是一一对应的。 边缘值关系表示界面的两侧的场和界面处的电荷电流的制约关系,它们实质上是边界上的场方程式。 20、例如无限大平行板电容器内有2层电介质(图),求出极板上表面的电荷密度f,求出电场和束缚电荷分布。 由于对称性,电场沿着与平板垂直的方向,将边值关系应用于下板与介质1的界面,导体内的电场强度为零,因此,同样地,将边值关系应用于上板与介质2的界面,由解、21这两个式子得到,束缚电荷分布于介质表面。 在两个介质的界面处,f=0,由,获得,22,在介质1和下板之间的边界处,在介质2和上板之间的边界处,验证是容易的,获得,整个介质是电中性的,23,第四节电磁场的能量和能量流,1 .场和电荷系统的能量守恒定律的一般形式,能量以恒定的形式分布在场内,但是场是运动的,因此, 市场能量不是固定地分布在空间中,而是当市场在空间中传播时必须引入并描述两个物理量。 24、场的能量密度w(x,t )是场内每单位体积的能量。 场的能量流密度s、s在数值上与单位时间垂直地流过单位横截面的能量的方向表示能量输送方向,25、能量保存的积分形式:通过界面流入v内的能量、场对电荷系统赋予的功率、v内的场的能量增加率、场在转移过程中总能量被保存。 26、对应的微分形式:v时,因为:场相对于电荷的总功率等于场的总能量减少率,所以场和电荷的总能量守恒. 27、2 .电磁场能量密度和能量流密度公式可以从洛伦兹力公式3360、28得出,比较, 分29个部分进行研究: (1)由于是真空中的电荷分布状况,因此此时相互作用的物质是电磁场和自由电荷,能量在两者之间传播。 真空中,30、电场给自由电荷带来的电力密度为je,它可以变成电荷的动能,也可以变成焦耳热。 电场束缚介质中电荷的功能变化为极化能和磁化能并存储在介质中,一部分可能变化为分子热运动(介质损耗)。 外场变化时,极化能和磁化能也变化,与介电损耗无关,该变化是可逆的。 (2)介质内的电磁能量和能量流,此时相互作用的系统由电磁场、自由电荷、介质三个方面组成。 31、一般介质中场能量的变化量、线性介质、积分:介质的极化和磁化状态由介质的电磁性质方程式决定,一定的宏电磁场与一定的介质的极化和磁化状态对应,因此根据入场能量考虑极化能量和磁化能量32、3 .电磁能量的传送在恒定电流或低频交流的情况下电磁能量向场地传送。 在电路中,物理系统的能量包括导线内部的电子运动的动能和导线周围空间的电磁场能。 另外,导线内的电流密度为:33,导体内的自由电子的平均漂移速度小,相应的动能也小,但是在一定情况下,由于整个电路中的电流具有相同的值,所以电子运动的能量不供给负载所消耗的能量。 在传输过程中,对于一部分能量进入引线内部而导致焦耳热损失的负载电阻,电磁能量从场内的人电阻内供给负载消耗的能量。 34、4 .例子的同轴传输线内的导线半径为a,外
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备生产检修管理制度
- 设备缺陷异常管理制度
- 设备验收安装管理制度
- 设计公司薪资管理制度
- 设计质量安全管理制度
- 诊所人员消毒管理制度
- 诊所科室人员管理制度
- 试剂使用安全管理制度
- 财务统计部门管理制度
- 财政ukey管理制度
- 中国Linux软件行业市场发展现状及前景趋势与投资分析研究报告(2024-2030版)
- 探究大象耳朵秘密:2025年课堂新视角
- 《新能源乘用车二手车鉴定评估技术规范 第1部分:纯电动》
- 下沉式广场结构施工方案
- 《加坡的教育制度》课件
- Windows操作系统及应用期末测试试题及答案
- 《交通事故车辆及财物损失价格鉴证评估技术规范》
- 北师大版二年级数学下册各单元测试卷
- 招生就业处2025年工作计划
- 【MOOC】外国文学经典导读-西北大学 中国大学慕课MOOC答案
- 医院供电合同
评论
0/150
提交评论