(精选幻灯片)北师大版七年级数学第二章有理数及其运算_总复习课件_第1页
(精选幻灯片)北师大版七年级数学第二章有理数及其运算_总复习课件_第2页
(精选幻灯片)北师大版七年级数学第二章有理数及其运算_总复习课件_第3页
(精选幻灯片)北师大版七年级数学第二章有理数及其运算_总复习课件_第4页
(精选幻灯片)北师大版七年级数学第二章有理数及其运算_总复习课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

有理数的混合运算,小结与复习,1,有理数总复习,一、有理数的基本概念,二、有理数的运算,1.负数2.有理数3.数轴4.互为相反数5.互为倒数6.有理数的绝对值7.有理数大小的比较,加、减、乘、除、乘方运算,2,一、有理数的基本概念,1.负数:,在正数前面加“”的数;,0既不是正数,也不是负数。,判断:1)a一定是正数;2)a一定是负数;3)(a)一定大于0;4)0是正整数。,3,2.有理数:,整数和分数统称有理数。,有理数,整数,分数,正整数(自然数),零,负整数,正分数,负分数,有理数,正数,零,负数,正整数,正分数,负整数,负分数,4,3.数轴,规定了原点、正方向和单位长度的直线.,1)在数轴上表示的两个数,右边的数总比左边的数大;,2)正数都大于0,负数都小于0;正数大于一切负数;,3)所有有理数都可以用数轴上的点表示。,5,4.相反数,只有符号不同的两个数,其中一个是另一个的相反数。,1)数a的相反数是-a,2)0的相反数是0.,-2,2,-4,4,3)若a、b互为相反数,则a+b=0.,(a是任意一个有理数);,6,5.倒数,乘积是1的两个数互为倒数.,1)a的倒数是(a0);,3)若a与b互为倒数,则ab=1.,2)0没有倒数;,例:下列各数,哪两个数互为倒数?8,-1,+(-8),1,,7,6.绝对值,一个数a的绝对值就是数轴上表示数a的点与原点的距离。,1)数a的绝对值记作a;,a,-a,0,3)对任何有理数a,总有a0.,8,7.有理数大小的比较,1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,绝对值大的反而小。即:若a0,b0,且ab,则ab.,9,在算式中,含有加、减、乘除及其乘方等多种运算,这样的运算叫做有理数的混合运算.怎样进行有理数的运算呢?按什么运算顺序进行呢?,10,简单地说:有理数混合运算应按下面的运算顺序进行:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的,11,有理数的五种运算,1.运算法则2.运算顺序3.运算律,12,1.运算法则,1)有理数加法法则2)有理数减法法则3)有理数乘法法则4)有理数除法法则5)有理数的乘方,13,1)有理数加法法则,同号两数相加,取相同的符号,并把绝对值相加;,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;,一个数同0相加,仍得这个数。,14,2)有理数减法法则,减去一个数,等于加上这个数的相反数.即a-b=a+(-b),例:分别求出数轴上两点间的距离:表示2的点与表示-7的点;表示-3的点与表示-1的点。,解:2-(-7)=2+7=9=9-3-(-1)=-3+1=-2=2,15,3)有理数的乘法法则,两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.,几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.,几个数相乘,有一个因数为0,积就为0.,16,4)有理数除法法则,除以一个数等于乘上这个数的倒数;即,ab=a(b0),两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.,17,5)有理数的乘方,求n个相同因数的积的运算,叫做乘方。,正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.,18,2.运算顺序,1)有括号,先算括号里面的;2)先算乘方,再算乘除,最后算加减;3)对只含乘除,或只含加减的运算,应从左往右运算。,19,3.有理数的运算律,1)加法交换律,a+b=b+a,2)加法结合律,(a+b)+c=a+(b+c),3)乘法交换律,ab=ba,4)乘法结合律,(ab)c=a(bc),5)分配律,a(b+c)=ab+ac,20,例1:计算下列各题:(1)分析:算式里含有乘方和乘除运算,所以应先算乘方,再算乘除。解:原式点评:在乘除运算中,一般把小数化成分数,以便约分。,21,(2)分析:第一步,将除法变为乘法和计算乘方;第二步,计算乘法;第三步,计算加减法,得出最后结果。解:原式=,22,(5)思路1:先算括号里面的加减法,再算括号外面的除法。解法1:原式7,23,思路2:先将除法化为乘法,再用乘法分配律。解法2:原式=7,点评:解法2比解法1简单,是因为在解法2中根据题目特点,使用了乘法分配律。在有理数的混合运算中,恰当、合理地使用运算律,可以使运算简捷,从而减少错误,提高运算的正确率。,24,例3计算下列各题:(1)1+2345678+979899100分析:观察式子特点,发现(13)、(24)、(57)、(9799)、(98100)结果均得2。所以运用加法交换律和结合律进行运算。解法1:原式=(13)+(24)+(57)+(9799)+(98100)=(2)50=100,25,本题还有下面的解法:解法2:原式=1+(234+5)+(678+9)+(94959697)9899100=100+9899100=11100=100这种解法的思路是将加数分为4个一组,每一组的和为0。,26

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论