高考理数 直线、平面垂直的判定与性质_第1页
高考理数 直线、平面垂直的判定与性质_第2页
高考理数 直线、平面垂直的判定与性质_第3页
高考理数 直线、平面垂直的判定与性质_第4页
高考理数 直线、平面垂直的判定与性质_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.3直线、平面垂直的判定与性质,高考理数(课标专用),A组统一命题课标卷题组考点直线、平面垂直的判定与性质1.(2018课标,18,12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值.,五年高考,解析(1)由已知可得BFEF,又已知BFPF,且PF、EF平面PEF,PFEF=F,所以BF平面PEF,又BF平面ABFD,所以平面PEF平面ABFD.(2)作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,|为单位长,建立如图所示的空间直角坐标系H-xyz.,由(1)可得,DEPE.又DP=2,DE=1,所以PE=,又PF=1,EF=2,故PEPF,可得PH=,EH=,则H(0,0,0),P,D,=,=为平面ABFD的法向量.设DP与平面ABFD所成角为,则sin=.所以DP与平面ABFD所成角的正弦值为.,易错警示利用空间向量求线面角的注意事项(1)先求出直线的方向向量与平面的法向量所夹的锐角(钝角时取其补角)的角度,再取其余角即为所求.(2)若求线面角的余弦值,要注意利用平方关系sin2+cos2=1求出其值,不要误以为直线的方向向量与平面的法向量所夹角的余弦值为所求.,2.(2017课标,19,12分)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD.(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.,解析本题考查面面垂直的证明,二面角的求法.(1)由题设可得,ABDCBD,从而AD=DC.又ACD是直角三角形,所以ADC=90.取AC的中点O,连接DO,BO,则DOAC,DO=AO.又由于ABC是正三角形,故BOAC.所以DOB为二面角D-AC-B的平面角.在RtAOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故DOB=90.所以平面ACD平面ABC.(2)由题设及(1)知,OA,OB,OD两两垂直.以O为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系O-xyz.则A(1,0,0),B(0,0),C(-1,0,0),D(0,0,1).,由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E.故=(-1,0,1),=(-2,0,0),=.设n=(x,y,z)是平面DAE的法向量,则即可取n=.设m是平面AEC的法向量,则,同理可取m=(0,-1,).则cos=.易知二面角D-AE-C为锐二面角,所以二面角D-AE-C的余弦值为.,方法总结证明面面垂直最常用的方法是证明其中一个平面经过另一个平面的一条垂线,即在一个平面内,找一条直线,使它垂直于另一个平面.用空间向量法求二面角的余弦值时,要判断二面角是钝角还是锐角.,3.(2016课标,18,12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,AFD=90,且二面角D-AF-E与二面角C-BE-F都是60.(1)证明:平面ABEF平面EFDC;(2)求二面角E-BC-A的余弦值.,解析(1)由已知可得AFDF,AFFE,所以AF平面EFDC.(2分)又AF平面ABEF,故平面ABEF平面EFDC.(3分),(2)过D作DGEF,垂足为G,由(1)知DG平面ABEF.以G为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系G-xyz.(6分)由(1)知DFE为二面角D-AF-E的平面角,故DFE=60,则|DF|=2,|DG|=,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,).由已知得,ABEF,所以AB平面EFDC.(8分),又平面ABCD平面EFDC=CD,故ABCD,CDEF.由BEAF,可得BE平面EFDC,所以CEF为二面角C-BE-F的平面角,CEF=60.从而可得C(-2,0,).所以=(1,0,),=(0,4,0),=(-3,-4,),=(-4,0,0).(10分)设n=(x,y,z)是平面BCE的法向量,则,即所以可取n=(3,0,-).设m是平面ABCD的法向量,则同理可取m=(0,4).则cos=-.又易知二面角E-BC-A为钝二面角,故二面角E-BC-A的余弦值为-.(12分),思路分析(1)根据已知条件证出AF平面EFDC,进而得出平面ABEF平面EFDC;(2)根据证得的垂直关系建立空间直角坐标系,求出平面BCE、平面ABCD的法向量,进而可求得二面角E-BC-A的余弦值.,方法总结对于立体几何问题的求解,首先要熟练掌握平行与垂直的判定与性质,对于面面垂直的证明,寻找平面的垂线往往是解题的关键.,4.(2015课标,18,12分)如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.(1)证明:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值.,解析(1)连接BD.设BDAC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由ABC=120,可得AG=GC=.由BE平面ABCD,AB=BC,可知AE=EC.又AEEC,所以EG=,且EGAC.在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=.从而EG2+FG2=EF2,所以EGFG.又ACFG=G,可得EG平面AFC.因为EG平面AEC,所以平面AEC平面AFC.(6分)(2)如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,|为单位长,建立空间直角坐标系G-xyz.,由(1)可得A(0,-,0),E(1,0,),F,C(0,0),所以=(1,),=.(10分)故cos=-.所以直线AE与直线CF所成角的余弦值为.(12分),5.(2014课标,19,12分,0.428)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,ABB1C.(1)证明:AC=AB1;(2)若ACAB1,CBB1=60,AB=BC,求二面角A-A1B1-C1的余弦值.,解析(1)连接BC1,交B1C于点O,连接AO.因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点.又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1O=CO,故AC=AB1.(2)因为ACAB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以BOABOC.故OAOB,从而OA,OB,OB1两两垂直.以O为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系O-xyz.因为CBB1=60,所以CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C,.=,=,=.设n=(x,y,z)是平面AA1B1的法向量,则即所以可取n=(1,).设m是平面A1B1C1的法向量,则同理可取m=(1,-,).则cos=.易知二面角A-A1B1-C1为锐二面角,所以二面角A-A1B1-C1的余弦值为.,方法点拨在求解或证明过程中,通常会用到一些初中阶段学习的平面几何知识,如三角形中位线的性质、菱形的性质,等腰三角形的性质,相似(全等)三角形的判定与性质等,在复习时应予以关注.,考点直线、平面垂直的判定与性质1.(2014广东,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()A.l1l4B.l1l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定,B组自主命题省(区、市)卷题组,答案D由l1l2,l2l3可知l1与l3的位置不确定,若l1l3,则结合l3l4,得l1l4,所以排除选项B、C,若l1l3,则结合l3l4,知l1与l4可能不垂直,所以排除选项A.故选D.,评析本题考查了空间直线之间的位置关系,考查学生的空间想象能力、思维的严密性.,2.(2018北京,16,14分)如图,在三棱柱ABC-A1B1C1中,CC1平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=,AC=AA1=2.(1)求证:AC平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.,解析(1)在三棱柱ABC-A1B1C1中,因为CC1平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以ACEF.因为AB=BC,所以ACBE.所以AC平面BEF.(2)由(1)知ACEF,ACBE,EFCC1.又CC1平面ABC,所以EF平面ABC.因为BE平面ABC,所以EFBE.如图建立空间直角坐标系E-xyz.,由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).所以=(-1,-2,0),=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0),则即令y0=-1,则x0=2,z0=-4.,于是n=(2,-1,-4).又因为平面CC1D的一个法向量为=(0,2,0),所以cos=-.由题知二面角B-CD-C1为钝角,所以其余弦值为-.(3)由(2)知平面BCD的一个法向量为n=(2,-1,-4),=(0,2,-1).因为n=20+(-1)2+(-4)(-1)=20,所以直线FG与平面BCD相交.,3.(2015北京,17,14分)如图,在四棱锥A-EFCB中,AEF为等边三角形,平面AEF平面EFCB,EFBC,BC=4,EF=2a,EBC=FCB=60,O为EF的中点.(1)求证:AOBE;(2)求二面角F-AE-B的余弦值;(3)若BE平面AOC,求a的值.,解析(1)证明:因为AEF是等边三角形,O为EF的中点,所以AOEF.又因为平面AEF平面EFCB,AO平面AEF,所以AO平面EFCB.所以AOBE.,(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OGEF.由(1)知AO平面EFCB,又OG平面EFCB,所以OAOG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即令z=1,则x=,y=-1.,于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos=-.由题设知二面角F-AE-B为钝二面角,所以它的余弦值为-.(3)因为BE平面AOC,所以BEOC,即=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以=-2(a-2)-3(a-2)2.由=0及0a2,解得a=.,评析本题主要考查面面垂直的性质定理、二面角的求解以及线面垂直的性质定理,考查学生空间想象能力和运算求解能力,正确建立空间直角坐标系以及表示点的坐标是解决本题的关键.,4.(2015湖北,19,12分)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD底面ABCD,且PD=CD,过棱PC的中点E,作EFPB交PB于点,F,连接DE,DF,BD,BE.(1)证明:PB平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.,解析解法一:(1)因为PD底面ABCD,所以PDBC,由底面ABCD为长方形,有BCCD,而PDCD=D,所以BC平面PCD,而DE平面PCD,所以BCDE.又因为PD=CD,点E是PC的中点,所以DEPC.而PCBC=C,所以DE平面PBC.而PB平面PBC,所以PBDE.又PBEF,DEEF=E,所以PB平面DEF.,又因为PD底面ABCD,所以PDDG.而PDPB=P,所以DG平面PBD.故BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=,有BD=,在RtPDB中,由DFPB,得DPF=FDB=,则tan=tanDPF=,解得=.所以=.故当面DEF与面ABCD所成二面角的大小为时,=.,由DE平面PBC,PB平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为DEB,DEF,EFB,DFB.(2)如图,在面PBC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线.由(1)知,PB平面DEF,所以PBDG.,解法二:(1)如图,以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=,则D(0,0,0),P(0,0,1),B(,1,0),C(0,1,0),=(,1,-1),点E是PC的中点,所以E,=,于是=0,即PBDE.又已知EFPB,而DEEF=E,所以PB平面DEF.因=(0,1,-1),=0,则DEPC,所以DE平面PBC.由DE平面PBC,PB平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为DEB,DEF,EFB,DFB.(2)由PD平面ABCD,所以=(0,0,1)是平面ABCD的一个法向量;由(1)知,PB平面DEF,所以=(-,-1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为,则cos=,解得=,所以=.故当面DEF与面ABCD所成二面角的大小为时,=.,5.(2014辽宁,19,12分)如图,ABC和BCD所在平面互相垂直,且AB=BC=BD=2,ABC=DBC=120,E,F分别为AC,DC的中点.(1)求证:EFBC;(2)求二面角E-BF-C的正弦值.,解析(1)证法一:过E作EOBC,垂足为O,连OF,如图1.图1由ABCDBC可证出EOCFOC.所以EOC=FOC=,即FOBC.又EOBC,因此BC面EFO.又EF面EFO,所以EFBC.证法二:以B为坐标原点,在平面DBC内过B且垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B且垂直BC的直线为z轴,建立如图2所示空间直角坐标系,图2易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E,F,所以,=,=(0,2,0),因此=0.从而,所以EFBC.(2)解法一:在图1中,过O作OGBF,垂足为G,连EG.由平面ABC平面BDC,从而EO面BDC,又OGBF,由三垂线定理知EGBF.因此EGO为二面角E-BF-C的平面角.,在EOC中,EO=EC=BCcos30=,由BGOBFC知,OG=FC=,因此tanEGO=2,从而sinEGO=,即二面角E-BF-C的正弦值为.解法二:在图2中,平面BFC的一个法向量为n1=(0,0,1).设平面BEF的法向量为n2=(x,y,z),又=,=,由得其中一个n2=(1,-,1).,评析本题考查空间位置关系的证明及空间角的求法.本题的难点和易错点都是空间直角坐标系的建立,由于A、D两点都不在坐标轴上,因此正确求出A、D两点的坐标是解决本题的关键.,cos=|cos|=,因此sin=,即所求二面角的正弦值为.,设二面角E-BF-C的大小为,且由题意知为锐角,则,考点直线、平面垂直的判定与性质1.(2015湖南,19,13分)如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形,A1A=6,且A1A底面ABCD.点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1PQ;(2)若PQ平面ABB1A1,二面角P-QD-A的余弦值为,求四面体ADPQ的体积.,C组教师专用题组,解析解法一:由题设知,AA1,AB,AD两两垂直.以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0m6.(1)若P是DD1的中点,则P,=.又=(3,0,6),于是=18-18=0,所以,即AB1PQ.(2)由题设知,=(6,m-6,0),=(0,-3,6)是平面PQD内的两个不共线向量.设n1=(x,y,z)是平面,PQD的法向量,则即取y=6,得n1=(6-m,6,3).又平面AQD的一个法向量是n2=(0,0,1),所以cos=.而二面角P-QD-A的余弦值为,因此=,解得m=4,或m=8(舍去),此时Q(6,4,0).设=(00),由|2=|2=2,|2=4,可得x=-,y=,z=1,P,(4分)F是PD的中点,F,=0,CBCF,CEBC,CECF=C,BC平面EFC,BC平面PBC,平面EFC平面PBC.(6分)(2)由(1)知,=(0,1,0),=,设n=(x,y,z)是平面PBC的法向量,则(8分)令x=-2,则n=(-2,0,-),(9分)设m=(0,0,1),易知m是平面ABC的一个法向量,(10分),cos=-,(11分)又易知二面角A-BC-P为钝二面角,二面角A-BC-P的余弦值为-.(12分),思路分析解法一:(1)取BC的中点G,由线面垂直的判定可以得证BC面PAG,从而得BCPA,进而利用平行关系及线面垂直的判定可得BC面EFC,从而得面EFC面PBC;(2)利用定义法找出二面角A-BC-P的平面角,在三角形内用余弦定理求相应角的余弦值.解法二:建立合适的空间直角坐标系,利用空间向量法证明和求解(关键在于求出各

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论