26.3实践与探索.ppt_第1页
26.3实践与探索.ppt_第2页
26.3实践与探索.ppt_第3页
26.3实践与探索.ppt_第4页
26.3实践与探索.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

26.3实践与探索,第26章二次函数,第2课时二次函数与一元二次方程(不等式)的关系,九年级数学华师,学习目标,1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点)2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点)3.了解用图象法求一元二次方程的近似根.,导入新课,情境引入,问题如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:,讲授新课,(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,15,1,3,当球飞行1s或3s时,它的高度为15m.,解:解方程15=20t-5t2,t2-4t+3=0,t1=1,t2=3.,你能结合上图,指出为什么在两个时间求的高度为15m吗?,h=20t-5t2,(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?,你能结合图形指出为什么只在一个时间球的高度为20m?,20,4,解方程:20=20t-5t2,t2-4t+4=0,t1=t2=2.,当球飞行2秒时,它的高度为20米.,h=20t-5t2,(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?,你能结合图形指出为什么球不能达到20.5m的高度?,20.5,解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-44.10,有一个交点,有两个相等的实数根,b2-4ac=0,没有交点,没有实数根,b2-4ac0的解集是_;不等式ax2+bx+c0的解集是_.,y,x1=-1,x2=3,x3,-1x2的解集是_;不等式ax2+bx+c2的解集是_.,3,-1,O,x,2,(4,2),(-2,2),x1=-2,x2=4,x4,-2x0(a0)的解集是x2的一切实数,那么函数y=ax2+bx+c的图象与x轴有_个交点,坐标是_.方程ax2+bx+c=0的根是_.,1,(2,0),x=2,2,O,x,问题3:如果方程ax2+bx+c=0(a0)没有实数根,那么函数y=ax2+bx+c的图象与x轴有_个交点;不等式ax2+bx+c0时,ax2+bx+c0无解;,(2)当a0时,ax2+bx+c0;-x2+x+20;x2-4x+40;-x2+x-20.,x1=-1,x2=2,1x2,x1-1,x22,x2-4x+4=0,x=2,x2的一切实数,x无解,-x2+x-2=0,x无解,x无解,x为全体实数,知识要点,有两个交点x1,x2(x1x2),有一个交点x0,没有交点,二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系,y0,x1xx2.y0,x2x或xx2.,y0,x1xx2.y0,x2x或xx2.,y0.x0之外的所有实数;y0,无解,y0.x0之外的所有实数;y0,无解.,y0,所有实数;y0,无解,y0,所有实数;y0,无解,判断方程ax2+bx+c=0(a0,a,b,c为常数)一个解x的范围是()A.3x3.23B.3.23x3.24C.3.24x3.25D.3.25x0?(3)x取什么值时,y0?,解:(1)x1=2,x2=4;,(2)x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论