JSP技术的优劣简析与应用框架简介_第1页
JSP技术的优劣简析与应用框架简介_第2页
JSP技术的优劣简析与应用框架简介_第3页
JSP技术的优劣简析与应用框架简介_第4页
JSP技术的优劣简析与应用框架简介_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Brief introduction of JSP Technology and JSP application frameworks作者: Zambon, Giulio/ Sekler, Michael出处: Springer-Verlag New York Inc1.Benefits of JSP JSP pages are translated into servlets. So, fundamentally, any task JSP pages can perform could also be accomplished by servlets. However, this underlying equivalence does not mean that servlets and JSP pages are equally appropriate in all scenarios. The issue is not the power of the technology, it is the convenience, productivity, and maintainability of one or the other. After all, anything you can do on a particular computer platform in the Java programming language you could also do in assembly language. But it still matters which you choose.JSP provides the following benefits over servlets alone: It is easier to write and maintain the HTML. Your static code is ordinary HTML: no extra backslashes, no double quotes, and no lurking Java syntax. You can use standard Web-site development tools. Even HTML tools that know nothing about JSP can be used because they simply ignore the JSP tags. You can divide up your development team. The Java programmers can work on the dynamic code. The Web developers can concentrate on the presentation layer. On large projects, this division is very important. Depending on the size of your team and the complexity of your project, you can enforce a weaker or stronger separation between the static HTML and the dynamic content. Now, this discussion is not to say that you should stop using servlets and use only JSP instead. By no means. Almost all projects will use both. For some requests in your project, you will use servlets. For others, you will use JSP. For still others, you will combine them with the MVC architecture . You want the appropriate tool for the job, and servlets, by themselves, do not complete your toolkit.2. Misconceptions About JSP Forgetting JSP Is Server-Side Technology Here are some typical questions Marty has received (most of them repeatedly). Our server is running JDK 1.4. So, how do I put a Swing component in a JSP page? How do I put an image into a JSP page? I do not know the proper Java I/O commands to read image files. Since Tomcat does not support JavaScript, how do I make images that are highlighted when the user moves the mouse over them? Our clients use older browsers that do not understand JSP. What should we do? When our clients use View Source in a browser, how can I prevent them from seeing the JSP tags? All of these questions are based upon the assumption that browsers know something about the server-side process. But they do not. Thus: For putting applets with Swing components into Web pages, what matters is the browsers Java versionthe servers version is irrelevant. If the browser supports the Java 2 platform, you use the normal APPLET (or Java plug-in) tag and would do so even if you were using non-Java technology on the server. You do not need Java I/O to read image files; you just put the image in the directory for Web resources (i.e., two levels up from WEB-INF/classes) and output a normal IMG tag. You create images that change under the mouse by using client-side JavaScript, referenced with the SCRIPT tag; this does not change just because the server is using JSP. Browsers do not support JSP at allthey merely see the output of the JSP page. So, make sure your JSP outputs HTML compatible with the browser, just as you would do with static HTML pages. And, of course you need not do anything to prevent clients from seeing JSP tags; those tags are processed on the server and are not part of the output that is sent to the client.Confusing Translation Time with Request Time A JSP page is converted into a servlet. The servlet is compiled, loaded into the servers memory, initialized, and executed. But which step happens when? To answer that question, remember two points: The JSP page is translated into a servlet and compiled only the first time it is accessed after having been modified. Loading into memory, initialization, and execution follow the normal rules for servlets. The most frequently misunderstood entries are highlighted. When referring to the table, note that servlets resulting from JSP pages use the _jspService method (called for both GET and POST requests), not doGet or doPost. Also, for initialization, they use the jspInit method, not the init method.JSP page translated into servlet Servlet compiled Servlet loaded into servers memory jspInit called _jspService called.3.What are application frameworks: A framework is a reusable, semi-complete application that can be specialized to produce custom applications Johnson. Like people, software applications are more alike than they are different. They run on the same computers, expect input from the same devices, output to the same displays, and save data to the same hard disks. Developers working on conventional desktop applications are accustomed to toolkits and development environments that leverage the sameness between applications. Application frameworks build on this common ground to provide developers with a reusable structure that can serve as the foundation for their own products. A framework provides developers with a set of backbone components that have the following characteristics:1.They are known to work well in other applications.2. They are ready to use with the next project.3. They can also be used by other teams in the organization. Frameworks are the classic build-versus-buy proposition. If you build it, you will understand it when you are donebut how long will it be before you can roll your own? If you buy it, you will have to climb the learning curveand how long is that going to take? There is no right answer here, but most observers would agree that frameworks such as Struts provide a significant return on investment compared to starting from scratch, especially for larger projects.Enabling technologies:Applications developed with Struts are based on a number of enabling technologies.These components are not specific to Struts and underlie every Java web application. A reason that developers use frameworks like Struts is to hide the nasty details behind acronyms like HTTP, CGI, and JSP. As a Struts developer, you dont need to be an alphabet soup guru, but a working knowledge of these base technologies can help you devise creative solutions to tricky problems.Hypertext Transfer Protocol (HTTP):When mediating talks between nations, diplomats often follow a formal protocol.Diplomatic protocols are designed to avoid misunderstandings and to keep negotiations from breaking down. In a similar vein, when computers need to talk, they also follow a formal protocol. The protocol defines how data is transmitted and how to decode it once it arrives. Web applications use the Hypertext Transfer Protocol (HTTP) to move data between the browser running on your computer and the application running on the server.Many server applications communicate using protocols other than HTTP. Some of these maintain an ongoing connection between the computers. The application server knows exactly who is connected at all times and can tell when a connection is dropped. Because they know the state of each connection and the identity of each person using it, these are known as stateful protocols.By contrast, HTTP is known as a stateless protocol. An HTTP server will accept any request from any client and will always provide some type of response, even if the response is just to say no. Without the overhead of negotiating and retaining a connection, stateless protocols can handle a large volume of requests. This is one reason why the Internet has been able to scale to millions of computers.Another reason HTTP has become the universal standard is its simplicity. An HTTP request looks like an ordinary text document. This has made it easy for applications to make HTTP requests. You can even send an HTTP request by hand using a standard utility such as Telnet. When the HTTP response comes back, it is also in plain text that developers can read.The first line in the HTTP request contains the method, followed by the locationof the requested resource and the version of HTTP. Zero or more HTTP request headers follow the initial line. The HTTP headers provide additional information to the server. This can include the browser type and version, acceptable document types, and the browsers cookies, just to name a few. Of the seven request methods, GET and POST are by far the most popular.Once the server has received and serviced the request, it will issue an HTTP response. The first line in the response is called the status line and carries the HTTP protocol version, a numeric status, and a brief description of the status. Following the status line, the server will return a set of HTTP response headers that work in a way similar to the request headers.As we mentioned, HTTP does not preserve state information between requests.The server logs the request, sends the response, and goes blissfully on to the next request. While simple and efficient, a stateless protocol is problematic for dynamic applications that need to keep track of their users. (Ignorance is not always bliss.Cookies and URL rewriting are two common ways to keep track of users between requests. A cookie is a special packet of information on the users computer. URL rewriting stores a special reference in the page address that a Java server can use to track users. Neither approach is seamless, and using either means extra work when developing a web application. On its own, a standard HTTP web server does not traffic in dynamic content. It mainly uses the request to locate a file and then returns that file in the response. The file is typically formatted using Hypertext Markup Language (HTML) W3C, HTML that the web browser can format and display. The HTML page often includes hypertext links to other web pages and may display any number of other goodies, such as images and videos. The user clicks a link to make another request, and the process begins a new.Standard web servers handle static content and images quite well but need a helping hand to provide users with a customized, dynamic response. DEFINITION:Static content on the Web comes directly from text or data files, like HTML or JPEG files. These files might be changed from time to time, but they are not altered automatically when requested by a web browser. Dynamic content, on the other hand, is generated on the fly, typically in response to an individualized request from a browser.Common Gateway Interface (CGI):The first widely used standard for producing dynamic content was the Common Gateway Interface (CGI). CGI uses standard operating system features, such as environment variables and standard input and output, to create a bridge, or gateway, between the web server and other applications on the host machine. The other applications can look at the request sent to them by the web server and create a customized response.When a web server receives a request thats intended for a CGI program, it runs that program and provides the program with information from the incoming request. The CGI program runs and sends its output back to the server. The web server then relays the response to the browser.CGI defines a set of conventions regarding what information it will pass as environment variables and how it expects standard input and output to be used. Like HTTP, CGI is flexible and easy to implement, and a great number of CGI-aware programs have been written.The main drawback to CGI is that it must run a new copy of the CGI-aware program for each request. This is a relatively expensive process that can bog down high-volume sites where thousands of requests are serviced per minute. Another drawback is that CGI programs tend to be platform dependent. A CGI program written for one operating system may not run on another.4. Java servletsSuns Java Servlet platform directly addresses the two main drawbacks of CGI programs.First, servlets offer better performance and utilization of resources than conventional CGI programs. Second, the write-once, run-anywhere nature of Java means that servlets are portable between operating systems that have a Java Virtual Machine (JVM).A servlet looks and feels like a miniature web server. It receives a request and renders a response. But, unlike conventional web servers, the servlet application programming interface (API) is specifically designed to help Java developers create dynamic applications.The servlet itself is simply a Java class that has been compiled into byte code, like any other Java object. The servlet has access to a rich API of HTTP-specific services, but it is still just another Java object running in an application and can leverage all your other Java assets.To give conventional web servers access to servlets, the servlets are plugged into containers. The servlet container is attached to the web server. Each servlet can declare what URL patterns it would like to handle. When a request matching a registered pattern arrives, the web server passes the request to the container, and the container invokes the servlet.But unlike CGI programs, a new servlet is not created for each request. Once the container instantiates the servlet, it will just create a new thread for each request. Java threads are much less expensive than the server processes used by CGI programs. Once the servlet has been created, using it for additional requests incurs very little overhead. Servlet developers can use the init() method to hold references to expensive resources, such as database connections or EJB Home Interfaces, so that they can be shared between requests. Acquiring resources like these can take several secondswhich is longer than many surfers are willing to wait. The other edge of the sword is that, since servlets are multithreaded, servlet developers must take special care to be sure their servlets are thread-safe. To learn more about servlet programming, we recommend Java Servlets by Example, by Alan R. Williamson Williamson. The definitive source for Servlet information is the Java Servlet Specification Sun, JST.5. JavaBeansJavaBeans are Java classes which conform to a set of design patterns that make them easier to use with development tools and other components.DEFINITION A JavaBean is a reusable software component written in Java. To qualify as a JavaBean, the class must be concrete and public, and have a noargument constructor. JavaBeans expose internal fields as properties by providing public methods that follow a consistent design pattern. Knowing that the property names follow this pattern, other Java classes are able to use introspection to discover and manipulate JavaBean properties. The JavaBean design patterns provide access to the beans internal state through two flavors of methods: accessors are used to read a JavaBeans state; mutators are used to change a JavaBeans state.Mutators are always prefixed with lowercase token set followed by the property name. The first character in the property name must be uppercase. The return value is always voidmutators only change property values; they do not retrieve them. The mutator for a simple property takes only one parameter in its signature, which can be of any type. Mutators are often nicknamed setters after their prefix. The mutator method signature for a weight property of the type Double would be:public void setWeight(Double weight)A similar design pattern is used to create the accessor method signature. Accessor methods are always prefixed with the lowercase token get, followed by the property name. The first character in th

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论