大学物理稳恒磁场_第1页
大学物理稳恒磁场_第2页
大学物理稳恒磁场_第3页
大学物理稳恒磁场_第4页
大学物理稳恒磁场_第5页
已阅读5页,还剩130页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,磁畴图象,第十章稳恒磁场10-1磁场磁感应强度10-2安培环路定理10-3磁场对载流导线的作用10-4磁场对运动电荷的作用10-6磁介质,2,10-1磁场磁感应强度,一、基本磁现象,1、自然磁现象,磁性:具有能吸引铁磁物资(Fe、Co、Ni)的一种特性。,磁体:具有磁性的物体,磁极:磁性集中的区域,地磁:地球是一个大磁体。,磁极不能分离,(正负电荷可以分离开),3,地核每400年比地壳多转一周,地球的磁极每隔几千年会发生颠倒,4,、磁现象起源于运动电荷,后来人们还发现磁电联系的例子有:磁体对载流导线的作用;通电螺线管与条形磁铁相似;载流导线彼此间有磁相互作用;,18191820年丹麦物理学家奥斯特首先发现了电流的磁效应。1820年4月,奥斯特做了一个实验,通电流的导线对磁针有作用,使磁针在电流周围偏转。,上述现象都深刻地说明了:磁现象与运动电荷之间有着深刻的联系。,5,安培的分子电流假说,、磁力,、近代分子电流的概念:轨道圆电流自旋圆电流分子电流,一切磁现象都起源于电流,任何物质的分子中都存在着环形电流(分子电流),每个分子电流就相当于一个基元磁体,当这些分子电流作规则排列时,宏观上便显示出磁性。,1822年安培提出了用分子电流来解释磁性起源。,磁体与磁体间的作用;电流与磁体间的作用;磁场与电流间的作用;磁场与运动电荷间的作用;均称之为磁力。,6,1、磁场,1)磁力的传递者是磁场,2)磁场是由运动电荷所激发,参考系是观察者,3)磁场对外的重要表现,电流(或磁铁)磁场电流(或磁铁),静止电荷激发静电场运动电荷可同时激发电场和磁场。,(1)磁场对进入场中的运动电荷或载流导体有磁力的作用;(2)载流导体在磁场中移动时,磁场的作用力对载流导体作功,表明磁场具有能量。,二、磁感应强度,磁场与电场一样、是客观存在的特殊形态的物质。,7,2、磁感应强度,1)磁矩:定义载流线圈的面积S与线圈中的电流I的乘积为磁矩(多匝线圈还要乘以线圈匝数),即,式中N为线圈的匝数,为线圈的法线方向,Pm与I组成右螺旋。,2)磁场方向:,使线圈磁矩处于稳定平衡位置时的磁矩的方向。,8,3)磁感应强度的大小,磁感应强度的单位1特斯拉104高斯(1T104GS),是试验线圈受到的最大磁力矩、是试验线圈的磁矩。,9,1、磁力线,常见电流磁力线:直电流,圆电流,通电螺线管的磁力线。,1)什么是磁力线?,2)磁力线特性,三、磁通量磁场中的高斯定理,、磁力线是环绕电流的闭合曲线,磁场是涡旋场。、任何两条磁力线在空间不相交。、磁力线的环绕方向与电流方向之间遵守右螺旋法则。,10,dm是穿过dS面的磁力线条数。,3)用磁力线描述磁场强弱,规定:通过垂直于磁力线方向的单位面积的磁力线数等于这一点磁感应强度的大小。即,B的另一单位,11,穿过磁场中某一曲面的磁力线总数,称为穿过该曲面的磁通量,用符号m表示。,3、磁场中的高斯定理,这说明i)磁力线是无头无尾的闭合曲线,ii)磁场是无源场,磁场无磁单极存在。,2、磁通量,由于磁力线是无头无尾的闭合曲线,所以穿过任意闭合曲面的总磁通量必为零。,12,1)电流元的方向:为线段中电流的方向。,1、毕奥沙伐尔定律,四、毕奥沙伐尔定律,13,2)在(SI)制中,3)B的方向dBIdl与r组成的平面,且dB与dlr0同向。,14,整个载流导体在P点的磁感应强度则是电流元在P点产生的dB之矢量和,式中r0是电流元指向P点的矢径的单位矢。,电流元在P点产生的磁感应强度的矢量式为,15,2、定律应用由Idlr确定电流元在P点的dB的方向将dB向选定的坐标轴投影,然后分别求出,16,(1)载流直导线的磁场:,解:取电流元Idl,P点对电流元的位矢为r,电流元在P点产生的磁感应强度大小为,方向垂直纸面向里,且所有电流元在P点产生的磁感应强度的方向相同,所以,17,设垂足为o,电流元离o点为l,op长为a,r与a夹角为,则,18,因为,所以,19,关于角的有关规定:,长直电流的磁场,角增加的方向与电流方向相同,则为正,反之,则为负,20,半长直电流的磁场,半长直电流:垂足与电流的一端重合,而直电流的另一段是无限长。,21,(2)圆电流的磁场,解:,由于对称性,22,所以,即,23,轴线上任一点P的磁场,圆电流中心的磁场,圆电流的中心的,1/n圆电流的中心的,24,长直电流与圆电流的组合例求下各图中0点的B的大小,25,求如图所示的电流中球心0的磁感应强度。,26,纸面向里,(2),电流元中心,27,例10-1无限长直导线折成V形,顶角为,置于X-Y平面内,且一个角边与X轴重合,如图。当导线中有电流I时,求Y轴上一点P(0,a)处的磁感应强度大小。,解:如图示,将V形导线的两根半无限长导线分别标为1和2,则,方向垂直纸面向内;,可求导线2在P点的磁感应强度,利用,方向垂直纸面向外;,28,P点的总磁感应强度大小为:,B的正方向垂直纸面向外。,29,(非相对论条件下、运动电荷的电场与磁场),如图,若带电粒子(即电荷)的定向运动速度为v,设导线截面为s,带电粒子数密度为n,则在dt时间内过截面s的带电粒子数,已知由电流元激发的磁场为,五、运动电荷的电磁场,30,若每个载流子的电荷为q,则dt时间内通过s截面的电量,于是在电流元中的电流强度为,若把电流元Idl所激发的磁场,看成由dN个载流子(运动电荷)激发而成,则,31,电荷q相对观察者以速度v运动、若vB0,r很大且不是常数、具有所谓“磁滞”现象的一类磁介质。,但在上述两类磁介质中B/附加磁矩Pm(相差两个数量级),Pm可以忽略不计,所以,此时的磁化主要是外磁场B0使Pm转向效应。,112,113,三、磁化强度和磁化电流,对于顺磁质,我们将磁介质内某点处单位体积内分子磁矩的矢量和,定义为该点的磁化强度,即,顺磁质的M的方向与外磁场B0的方向一致。,对于抗磁质,磁化的主要原因是抗磁质分子在外磁场中所产生的附加磁矩Pm,Pm与B0的方向相反,大小与B0成正比。抗磁质的磁化强度为,介质磁化后,在介质表面有磁化电流I(又称束缚电流),,单位体积元内的分子磁矩之矢量和不为零。,磁化强度:描述磁介质的磁化程度。,114,证明如下:设磁介质横截面积s、长度l,介质表面单位长度圆形磁化电流Js。则在长度l上圆形磁化电流Is=Jsl,因此在磁介质总体积sl上磁化电流的总磁矩为,利用充满顺磁质的长直载流螺线管可以证明,其顺磁质表面单位长度圆形磁化电流(即磁化电流密度)Js=M、M为顺磁质内磁化强度大小。,1、磁化电流的产生(以顺磁质的磁化为例),2、磁化电流与磁化强度的关系,四、磁介质中的安培环路定理,115,按定义,写成矢量式,有,式中n0为介质表面法线方向单位矢。,即,116,3、磁化强度的环流,由于充满顺磁质的长直螺线管内的磁场为均匀场,取如上图的矩形回路abcd,有,即,117,令为磁场强度,单位:A/m,对任意闭合回路进行B的积分,4、磁介质中的安培环路定理,118,即:H沿任一闭合回路的环流等于穿过该回路所围面积的传导电流之代数和,上式即为有磁介质时的安培环路定理。,得,s是回路l围出的面积,I是穿过s的传导电流的代数和。,119,五、B与H的关系,实验表明,在均匀各向同性的弱磁介质中,有,其中m称为磁介质的磁化率,只与磁介质的性质有关。,称为磁介质的相对磁导率;,即在弱磁介质中,有,上式代入,整理得,为磁介质的磁导率,120,利用可以方便地求有磁介质时某些对称的磁场分布。,、选择一个合适的积分回路或者使某一段积分线上H为常数,或使某一段积分线路上H处处与dl垂直;,3、先由求H,再由求B。,其基本步骤如下:,、首先要分析磁场分布的对称性或均匀性;,在铁磁质中,则为,121,、密绕长直螺线管内充满介质的磁感应强度:,、环形螺线管内部充满介质的磁感应强度:,、无限长的载流圆柱体外充满介质的磁场:,内部为,外部为,122,铁磁质具有高磁导率、非线性(不是常数);存在“磁滞现象”;存在居里温度等三个显著特征。,2、存在“磁滞现象”(如:在外场撤除后有剩磁):,六、铁磁质,、居里温度:对应于每一种铁磁物质都有一个临界温度(居里点),超过这个温度,铁磁物质就变成了顺磁物质。如铁的居里温度为1034K。,1、r1(即BB0)且r不是常数:而是H(亦即电流I)的函数,即r=rH)=rH(I)。因此,这时B与H间无简单线性关系也就是说,此时B0rH不成立,而只有成立。,123,1、磁化特性曲线:,1)研究铁磁质特性的实验:,H是电流为I时,铁心中的磁场强度;B是电流为I时,铁心中的磁感应强度;q是电流从0到I时、通过电流计G的电量;R是副线圈的电阻;N是副线圈的总匝数;S为环形铁心的横截面积。,原理-铁心中,装置-原线圈A(待测铁磁质做铁心)副线圈B。,124,2)起始磁化特性曲线:,即,B与H不成线性关系,即铁磁质的磁导率不再是常数、而是与H有关。,在B-H曲线(磁化规律)中Om段-B随H增长较慢;mn段-B随H迅速增长;na段-B随H增长变慢;当H=s以后,B不随H增长,磁化达到饱和。,125,不同磁介质的磁化曲线比较,126,2、磁滞回线:,B不是H的单值函数,与以前的磁化“历史”有关;,(1)剩磁Br:,起始磁化曲线Oa不可逆,当改变H的方向和大小时、可得B-H曲线如图,叫磁滞回线。从曲线可知:,磁化曲线下降时的B值比起始磁化曲线中同一H所对应的B值为高,当H减少到零时,B不为零,而出现一个剩磁Br。,127,(4)磁滞损耗:,可以证明:B-H曲线所围的面积等于反复磁化的一个周期中单位体积的磁介质中损耗的能量。,(3)磁滞回线:,如果继续加大反向磁场,将其反向磁化,并达到反向饱和,若这时逐渐撤除反向外场,其同样出现反向剩磁,要去掉反向剩磁则必须加上正向矫顽力;再正向磁化,其又可达正向饱和,这样就组成了一个封闭曲线,这个封闭曲线就叫磁滞回线。,改变H时、磁介质反复磁化,分子振动加剧、温度升高,产生H的电流提供的热损耗称为磁滞损耗。,(2)矫顽力HC,要使磁铁完全去磁,必须加上反向外场,只有反向外场HC到某一值才能完全去磁,,为去掉剩磁而加上的反向磁场HC就称为矫顽力。,128,3、磁畴-铁磁质的磁化理论,磁畴的几何线度从微米至毫米、体积约10-12m3,包含10171021个原子。无外磁场时、磁畴的磁矩排列杂乱无章,铁磁质宏观不显磁性。,1)磁畴,即铁磁质中原子磁矩自发高度有序排列的磁饱和小区。,量子理论指出:铁磁质中相邻原子由于电子轨道的交叠而产生一种“交换耦合效应”使原子磁矩能自发地有序排列,于是形成坚固的平行排列的大小不等的自发饱和磁化区。,129,2)铁磁质磁化解释:,mn段对应磁畴界壁快速跳跃移动、使一些缩小的磁畴消失,这是不可逆过程、引起了磁滞;,na段对应留存的磁畴转向外磁场方向、直到饱和。,在起始磁化特性曲线中,Om段对应自发磁化区磁矩方向与外磁场方向相近的磁畴的扩大、自发磁化区磁矩方向与外磁场方向相反的磁畴的缩小;,磁饱和:,加上外场后,铁磁质中总是有些磁畴内分子固有磁矩的取向与外场相同或相近。这些自发磁化方向与外场相同的磁畴的边界在外场的作用下将不断地蚕食扩大,而那些自发磁化方向与外磁方向不同的磁畴的边界就逐步缩小,故开始时磁化增长较慢,而后增长很快,直到所有磁畴被外场“同化”而达磁饱和。,130,居里点:,30%的坡莫合金居里温度tc=70C;,利用铁磁质具有居里温度的特点,可将其制作温控元件,如电饭锅自动控温。,剩磁:,原因是在高温下磁畴瓦解了。,如铁、钴、镍的居里点分别为770、1115、358。,在退磁时,由于磁畴边界的移动是不可逆的,因此,磁化过程和退磁过程也是不可逆的。即在去掉外场后,磁畴在磁化过程中的某种排列可能被保留下来,这就是剩磁现象振动和加热可以促进退磁也能证实这一点。,磁介质达到某一温度时,铁磁性消失、介质显顺磁性,这一温度称为居里点。当温度低于tc时,又由顺磁质转变为铁磁质。,131,4、铁磁质的分类及应用,1)硬磁质,磁滞回线较粗,剩磁很大,这种材料充磁后不易退磁,适合做永久磁铁。,如碳钢、铝镍钴合金和铝钢等。,可用在磁电式电表、永磁扬声器、耳机以及雷达中的磁控等。,2)软磁质,磁滞回线细长,剩磁很小。,象软铁、坡莫合金、硒钢片、铁铝合金、铁镍合金等。,由于软磁材料磁滞损耗小,适合用在交变磁场中,如变压器铁芯、继电器、电动机转子、定子都是用软磁材料制成。,132,3)非金属氧化物-铁氧体,磁滞回线呈矩形,又称矩磁材料,剩磁接近于饱和磁感应强度,具有高磁导率、高电阻率。,它是由Fe2O3和其他二价的金属氧化物(如NiO,ZnO等)粉末混合烧结而成。,可作磁性记忆元件。,133,退磁方法,1.加热法,当铁磁质的温度升高到某一温度时,磁性消失,由铁磁质变为顺磁质,该温度为居里温度tc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论