




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Prefacetothe1stEdition,Mostoftheobservablephenomenafinminintheempirical(empirikl经验)sciencesareofamultivariatenature.Infinancialstudies,assetsinstockmarketsareobservedsimultaneouslyandtheirjointdevelopmentisanalyzedtobetterunderstandgeneraltendencies(趋势)andtotrackindices(路灯).Theunderlyingtheoreticalstructureoftheseandmanyotherquantitativestudiesofappliedsciencesismultivariate.ThisbookonAppliedMultivariateStatisticalAnalysispresentsthetoolsandconceptsofmultivariatedataanalysiswithastrongfocusonapplications.Theaimofthebookistopresentmultivariatedataanalysisinawaythatisunderstandablefornon-mathematiciansandpractitionerswhoare(面对)bystatisticaldataanalysis.Thisisachievedbyfocusingonthepracticalrelevanceandthroughthee-bookcharacterofthistext.Allpracticalexamplesmayberecalculatedandmodifiedbythereaderusingastandardwebbrowserandwithoutreferenceorapplicationofanyspecificsoftware.,Mostoftheobservablephenomenafinminintheempirical(empirikl经验)sciencesareofamultivariatenature.Theunderlyingtheoreticalstructureoftheseandmanyotherquantitativestudiesofappliedsciencesismultivariate.ThisbookonAppliedMultivariateStatisticalAnalysispresentsthetoolsandconceptsofmultivariate,mltivereitdataanalysiswithastrongfocusonapplications.,Thebookisdividedintothreemainparts.Thefirstpartisdevotedtographicaltechniquesdescribingthedistributionsofthevariablesinvolved.Thesecondpartdealswithmultivariaterandomvariablesandpresentsfromatheoreticalpointofviewdistributions,estimatorsandtestsforvariouspracticalsituations.Thelastpartisonmultivariatetechniquesandintroducesthereadertothewideselectionoftoolsavailableformultivariatedataanalysis.Alldatasetsaregivenintheappendixandaredownloadablefromwww.md-.Thetextcontainsawidevarietyofexercisesthesolutionsofwhicharegiveninaseparatetextbook.Inadditionafullsetoftransparenciesonwww.md-isprovidedmakingiteasierforaninstructortopresentthematerialsinthisbook.Alltransparenciescontainhyperlinkstothestatisticalwebservicesothatstudentsandinstructorsalikemayrecomputeallexamplesviaastandardwebbrowser.,1-2week,UNIT-IDescriptiveTechniques(描述技术)1Comparison(对照)ofBatches1.1Boxplots41.2Histograms101.3Scatterplots171.4DataSet-BostonHousing35,1ComparisonofBatches,Multivariatestatisticalanalysisisconcernedwithanalyzingandunderstandingdatainhighdimensions.Wesupposethatwearegivenasetxini=1ofnobservationsofavariablevectorXinRp.Thatis,wesupposethateachobservationxihaspdimensions:xi=(xi1,xi2,.,xip),andthatitisanobservedvalueofavariablevectorXRp.Therefore,Xiscomposedofprandomvariables:X=(X1,X2,.,Xp)whereXj,forj=1,.,p,isaone-dimensionalrandomvariable.,1ComparisonofBatches,Multivariatestatisticalanalysisisconcernedwithanalyzingandunderstandingdatainhighdimensions.Howdowebegintoanalyzethiskindofdata?Beforeweinvestigatequestionsonwhatinferenceswecanreachfromthedata,weshouldthinkabouthowtolookatthedata.Thisinvolvesdescriptivetechniques.Questionsthatwecouldanswerbydescriptivetechniquesare:AretherecomponentsofXthataremorespreadoutthanothers?AretheresomeelementsofXthatindicatesubgroupsofthedata?ArethereoutliersinthecomponentsofX?How“normal”isthedistributionofthedata?,1.1Boxplots,1ComparisonofBatches,Genuinedenjuin真正的,X6,X1,Themedianandmeanbarsaremeasuresoflocations.Therelativelocationofthemedian(andthemean)intheboxisameasureofskewness.Thelengthoftheboxandwhiskersareameasureofspread.Thelengthofthewhiskersindicatethetaillengthofthedistribution.Theoutlyingpointsareindicatedwitha“”or“”dependingoniftheyareoutsideofFUL1.5dForFUL3dFrespectively.Theboxplotsdonotindicatemultimodalityorclusters.Ifwecomparetherelativesizeandlocationoftheboxes,wearecomparingdistributions.,Summary,Readingmaterial,1.2Histograms,h=0.4,Diagonal,Histogramsaredensity(denst)(密度)estimates(estimeits概算).Adensityestimategivesagoodimpressionofthedistributionofthedata.Incontrasttoboxplots,densityestimatesshowpossiblemultimodality(多模式;综合,mltimdliti)ofthedata.Theideaistolocallyrepresentthedatadensitybycountingthenumberofobservationsinasequenceofconsecutive(连续的)intervals(bins)(箱)withorigin(rn起源、原点)x0.LetBj(x0,h)denote(dinut,指示,表示)thebinoflengthhwhichistheelementofabingridstartingatx0:Bj(x0,h)=x0+(j1)h,x0+jh),jZ,where.,.)(squarebrackets)denotesaleftclosedandrightopeninterval(ntrvl间隔,右开区间).,Ifxini=1isani.i.d.samplewithdensityf,thehistogramisdefinedasfollows:Insum(1.7)thefirstindicatorfunctionIxiBj(x0,h)countsthenumberofobservationsfallingintobinBj(x0,h).ThesecondindicatorfunctionIisresponsiblefor“localizing”(luklizi局限)thecountsaroundx.Theparameterhisasmoothingorlocalizingparameterandcontrolsthewidth(wid)ofthehistogrambins.Anhthatistoolargeleadstoverybigblocksandthustoaveryunstructuredhistogram.Ontheotherhand,anhthatistoosmallgivesaveryvariableestimatewithmanyunimportantpeaks.,H=0.1,H=0.2,H=0.3,Diagonaldaignladj.对角线的,斜的n.对角线,斜线,H=0.4,TheeffectofhisgivenindetailinFigure1.6.Itcontainsthehistogram(upperleft)forthediagonalofthecounterfeitbanknotesforx0=137.8(theminimumoftheseobservations)andh=0.1.Increasinghtoh=0.2andusingthesameorigin,x0=137.8,resultsinthehistogramshowninthelowerleftofthefigure.Thisdensityhistogramissomewhatsmootherduetothelargerh.Thebinwidthisnextsettoh=0.3(upperright).Fromthishistogram,onehastheimpressionthatthedistributionofthediagonalisbimodalwithpeaksatabout138.5and139.9.Thedetectionofmodesrequiresafinetuningofthebinwidth.Usingmethodsfromsmoothingmethodology(medldi,n.方法学)onecanfindan“optimal”binwidthhfornobservations:,counterfeitkauntfitadj.假冒的,假装的,InFigure1.7,weshowhistogramswithx0=137.65(upperleft),x0=137.75(lowerleft),withx0=137.85(upperright),andx0=137.95(lowerright).Allthegraphshavebeenscaledequallyonthey-axistoallowcomparison.Oneseesthatdespitethefixedbinwidthhtheinterpretationisnotfacilitated(fsiliteitidvt.使容易).Theshiftoftheoriginx0(to4differentlocations)created4differenthistograms.Thispropertyofhistogramsstronglycontradictsthegoalofpresentingdatafeatures.,Modesofthedensityaredetectedwithahistogram.Modescorrespondtostrongpeaksinthehistogram.Histogramswiththesamehneednotbeidentical.Theyalsodependontheoriginx0ofthegrid.Theinfluenceoftheoriginx0isdrastic.Changingx0createsdifferentlookinghistograms.Theconsequenceofanhthatistoolargeisanunstructuredhistogramthatistooflat.Abinwidthhthatistoosmallresultsinanunstablehistogram.Thereisan“optimal”h=(24/n)1/3.Itisrecommendedtouseaveragedhistograms.Theyarekerneldensities.,Summary,1.4Scatterplots,Scatterplotsarebivariateortrivariateplotsofvariables(vribl)againsteachother.Theyhelpusunderstandrelationshipsamongthevariablesofadataset.Adownward-sloping(slupi)scatterindicatesthatasweincreasethevariableonthehorizontalaxis,thevariableontheverticalaxisdecreases(di:kri:svt.减少).Ananalogous(nlgsadj.类似的)statementcanbemadeforupward-slopingscatters.,Figure1.12plotsthe5thcolumn(upperinnerframe)ofthebankdataagainstthe6thcolumn(diagonal).Thescatterisdownward-sloping.Asweal
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省日照市莒县联考2024-2025学年六年级下学期期末检测数学试题(无答案)
- 北师大版五年级上册数学第一单元 小数除法 检测卷(无答案)
- 财富广场租房合同范本
- 网贷还款合同范本
- 保安公司试用合同范本
- 钢构基础合同范本
- 冲压厂加工合同范本
- 木材加工企业合同范本
- 入股保本经营合同范本
- 装饰拆除施工合同范本
- 广西田林八渡金矿 资源储量核实报告
- 目标管理Smart原则培训课件
- GB/T 44927-2024知识管理体系要求
- 《红楼梦》(解析版)
- 达州电力集团笔试真题
- AAMIST79-2017卫生保健设施蒸汽灭菌和无菌保证综合指南
- 《BOM材料清单教程》课件
- 《安全管理体系》课件
- 树立正确的人生价值观课件
- 防腐保温工程监理实施细则
- 法律事务所信息安全管理制度
评论
0/150
提交评论