已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与圆的位置关系(三)切线长定理,新课学习,城关镇中学:杨昆,(1)了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。(2)经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。,教学目标,O,。,A,B,P,过圆外一点可以引圆的几条切线?,在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长。,O,P,A,B,切线与切线长是一回事吗?它们有什么区别与联系呢?,切线长概念,切线:不可以度量。切线长:可以度量。,比一比,B,O,A,B,P,1,2,请证明你所发现的结论。,PA=PB,OPA=OPB,证明:PA,PB与O相切,点A,B是切点OAPA,OBPB即OAP=OBP=90OA=OB,OP=OPRtAOPRtBOP(HL)PA=PBOPA=OPB,试用文字语言叙述你所发现的结论,证一证,PA、PB分别切O于A、B,PA=PB,OPA=OPB,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,几何语言:,反思:切线长定理为证明线段相等、角相等提供新的方法,切线长定理,A,P,O,B,若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.,OP垂直平分AB,证明:PA,PB是O的切线,点A,B是切点PA=PBOPA=OPBPAB是等腰三角形,PM为顶角的平分线OP垂直平分AB,试一试,探究一:PA、PB是O的两条切线,A、B为切点,直线OP交于O于点D、E,交AB于C。,B,A,P,O,C,E,D,(1)写出图中所有的垂直关系,OAPA,OBPB,ABOP,(3)写出图中所有相等的线段,(2)写出图中与OAC相等的角,OAC=OBC=APC=BPC,OA=OB=OD=OE,PA-=PB,AC=BC,AE=BE,例3ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.,解:,设AF=x(cm),BD=y(cm),CEz(cm),AF=4(cm),BD=5(cm),CE=9(cm).,O与ABC的三边都相切,AFAE,BDBF,CECD,探究二:,。,P,B,A,O,(3)连结圆心和圆外一点,(2)连结两切点,(1)分别连结圆心和切点,反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。,想一想,训练提升:,1.既有外接圆,又内切圆的平行四边形是_.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_.3.O是边长为2cm的正方形ABCD的内切圆,EF切O于P点,交AB、BC于E、F,则BEF的周长是_.,E,F,H,G,正方形,22cm,2cm,A,P,O,。,B,若延长PO交O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.,CA=CB,证明:PA,PB是O的切线,点A,B是切点PA=PBOPA=OPBPC=PCPCAPCBAC=BC,C,切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,PA、PB分别切O于A、B,PA=PB,OPA=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采油地质工操作技能测试考核试卷含答案
- 船舶过闸及升船机调度员安全理论竞赛考核试卷含答案
- 伞制作工安全知识模拟考核试卷含答案
- 金属版印刷员安全生产能力测试考核试卷含答案
- 大班思维逻辑训练
- 路面维护合同范本
- 车辆协议取消合同
- 分包合同作废协议
- 车辆解抵合同范本
- 合同取消退款协议
- 髂动脉瘤病例讨论
- 电缆施工培训课件
- 霜冻期水稳养护覆盖技术专题
- 药品研发仓储管理制度
- 《极限驾驶:赛车的艺术与科学》读书记录
- 理工英语3-007-国开机考复习资料
- 数学好玩其二:看图找关系(折线统计图与行程问题)(学生版+解析)-2024-2025学年六年级数学下册培优精练(北师大版)
- 质量扣款协议书范本
- 股东大会会议记录纪要
- 提升初中教师数字素养的策略与路径
- 精益六西格玛培训
评论
0/150
提交评论