2020高考数学二轮复习课堂学案课件-数列的综合问题 (2)_第1页
2020高考数学二轮复习课堂学案课件-数列的综合问题 (2)_第2页
2020高考数学二轮复习课堂学案课件-数列的综合问题 (2)_第3页
2020高考数学二轮复习课堂学案课件-数列的综合问题 (2)_第4页
2020高考数学二轮复习课堂学案课件-数列的综合问题 (2)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,数列的综合问题,板块二专题六规范答题示例5,典例5(16分)已知各项均为正数的数列an的前n项和为Sn,且a1a,(an1)(an11)6(Snn),nN*.(1)求数列an的通项公式;(2)若对任意的nN*,都有Snn(3n1),求实数a的取值范围;(3)当a2时,将数列an中的部分项按原来的顺序构成数列bn,且b1a2,求证:存在无数个满足条件的无穷等比数列bn.,审题路线图,规范解答分步得分,(1)解当n1时,(a11)(a21)6(S11),又a110,故a25;当n2时,(an11)(an1)6(Sn1n1),所以(an1)(an11)(an11)(an1)6(Snn)6(Sn1n1),即(an1)(an1an1)6(an1).又an0,所以an1an16,3分所以a2k1a6(k1)6ka6,a2k56(k1)6k1,kN*,,(2)解当n为奇数时,n1为偶数,所以an3na3,an13n2,,当n为偶数时,n1为奇数,an3n1,an13na,,由Snn(3n1),得a3(n1)对nN*恒成立,所以a9.又a1a0,所以实数a的取值范围是(0,4.10分(3)证明当a2时,若n为奇数,则an3n1,所以an3n1(nN*).因为数列bn的首项是b15,其整数倍的最小项是a720,故可令等比数列bn的公比q4m(mN*),因为b1a25,所以bn54m(n1).,所以4k3(14424k1)1,所以54k53(14424k1)135(14424k1)21.14分因为5(14424k1)2为正整数,,所以数列bn是数列an中包含的无穷等比数列.又公比q4m(mN*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列bn有无数个.16分,构建答题模板,第一步找关系,求通项:根据已知条件确定数列的项之间的关系.第二步巧转化,定方法:根据要证式子或所求结论的结构,进行适当转化,如对数列求和,将数列函数化讨论数列的性质等确定解题方法.第三步写步骤,再反思:确定解题方案后要认真规范书写解题步骤,数列综合问题一般为压轴题,难度较大,要有抢分意识,不放过任何一个得分点.,评分细则(1)中求出an的递推公式给3分;求出an的通项公式给2分.(2)中讨论n为奇数的情况给3分;讨论n为偶数的情况给2分.(3)中求出bn的通项公式给4分;证明出最后结果给2分.,解由a4a34,a3a22,a2a11,累加得a48.,跟踪演练5(1)(2019盐城、南京模拟)已知数列an,其中nN*.若an满足an1anqn1(q0,nN*).()当q2,且a11时,求a4的值;,()若存在互不相等的正整数r,s,t,满足2srt,且ar,as,at成等差数列,求q的值;,解因为an1anqn1,所以anan1qn2,a2a11,当q1时,ana1n1,满足题意;,若存在r,s,t满足条件,化简得2qsqrqt,,此时q1(舍去),综上所述,符合条件q的值为1.,设数列an的前n项和为bn,数列bn的前n项和为cn,cnbn23,nN*,若a11,a22,且|aanan2|k恒成立,求k的最小值.,解由cnbn23,nN*,可知cn1bn33,两式作差可得bn3bn2bn1,又由c11,c24,可得b34,b47,故b3b2b1,所以bn2bn1bn对一切的nN*恒成立.对bn3bn2bn1,bn2bn1bn,两式作差可得an3aa2an1,又由b34,b47,可知a31,a43,故an2an1an(n2),,所以ann1(nN*).,若ap,30,Sq成等差数列,ap,18,Sq成等比数列,求正整数p,q的值;,解因为ap,30,Sq成等差数列,ap,18,Sq成等比数列,,所以p5,q9.,平方并化简得,(2m2)2(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论