




已阅读5页,还剩143页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DigitalSignalProcessing-SystemAnlysisandDesign,DigitalSignalProcessingSystemAnlysisandDesign,作译者:PauloS.R.Diniz等著ISBN号:7-5053-8171-7/TN.1702电子工业出版社中译本:门爱东等译,ISBN号:7-121-00063-6(2019-7),DigitalSignalProcessing,Chapter1Discrete-timesystem,4,digital,Of,relatingto,orresemblingadigit,especiallyafinger.手指的:手指的、与手指有关的或类似手指的Operatedordonewiththefingers:用手指操作或工作的:adigitalswitch.数字开关Havingdigits.有手指、足趾的Expressedindigits,especiallyforusebyacomputer.数字的:用数字表示,尤其用在计算机上Usingorgivingareadingindigits:计数的:使用或读出均为数字形式:adigitalclock.数字式钟,5,Signal-,Anindicator,suchasagestureorcoloredlight,thatservesasameansofcommunication.SeeSynonymsatgesture信号:一种用作通讯交流手段的指示,比如一种手势或有色的光参见gestureAmessagecommunicatedbysuchmeans.信号:用这种手段传达的信息ElectronicsAnimpulseorafluctuatingelectricquantity,suchasvoltage,current,orelectricfieldstrength,whosevariationsrepresentcodedinformation.【电子学】电波:电脉冲或变化的电量,比如电压、电流或电场强度,它们的变化表示着编码后的信息Thesound,image,ormessagetransmittedorreceivedintelegraphy,telephony,radio,television,orradar.信号:由电报、电话、收音机、电视机或雷达传播或收到的声音、影像或信息,6,process,Toputthroughthestepsofaprescribedprocedure:处理,进行:使通过一系列预定程序的各项步骤:processingnewlyarrivedimmigrants;receivedtheorder,processedit,anddispatchedthegoods.接待新到的移民;接到订单,进行处理,然后发送货物Toprepare,treat,orconvertbysubjectingtoaspecialprocess:调制,加工处理:通过特殊程序准备、处理或转换:processoretoobtainminerals.加工矿石获取矿物质ComputerScienceToperformoperationson(data).【计算机科学】处理,进程:执行对(数据)的操作,7,system,Agroupofinteracting,interrelated,orinterdependentelementsformingacomplexwhole.系统:组成一个复杂的整体的一组互相作用、互相联系或互相依存的元素Afunctionallyrelatedgroupofelements,especially:系统:一组在功能上互相联系的元素,尤指:Thehumanbodyregardedasafunctionalphysiologicalunit.身体系统:作为一个生理功能单位的人的身体Anorganismasawhole,especiallywithregardtoitsvitalprocessesorfunctions.有机体系统:作为一个整体的有机体,尤指当与它的重要变化过程或作用有关时Agroupofphysiologicallyoranatomicallycomplementaryorgansorparts:系统:一组生理或结构上互补器官或部分:thenervoussystem;theskeletalsystem.神经系统;骨骼系统Agroupofinteractingmechanicalorelectricalcomponents.装置:一组相互作用的机械或电子部件Anetworkofstructuresandchannels,asforcommunication,travel,ordistribution.设施:由组织与频道组成的网状系统,如为通讯,旅行或发行而设的,8,1.1Introduction,Theworldofscienceandengineeringisfilledwithsignals:imagesfromremotespaceprobes,voltagesgeneratedbytheheartandbrain,radarandsonarechoes,Seismic地震vibrations,countlessotherapplications.,9,1.1Introduction,DigitalSignalProcessingisthescienceofusingcomputerstounderstandthesetypesofdata.Thisincludesawidevarietyofgoals:filtering,speechrecognition,imageenhancement,datacompression,neuralnetworks,andmuchmore.,10,DigitalSignalProcessing(DSP)isusedinawidevarietyofapplications.,11,DSPisoneofthemostpowerfultechnologiesthatwillshapescienceandengineeringinthetwenty-firstcentury.Supposeweattachananalog-to-digitalconvertertoacomputer,andthenuseittoacquireachunkofrealworlddata.DSPanswersthequestion:Whatnext?,12,goodreasonsforlearningDSP,Itsthefuture!Thinkhowelectronicshaschangedtheworldinthelast50years.DSPwillhavethesameroleoverthenext50years.Learnitorbeleftbehind!DSPcansnatchsuccessfromthejawsoffailureLetSteveSmithtellyouaboutsomeexamplesfromhisowncareer.Excellentgraphics-figures,graphs,andillustrations,13,agreatexampleofhowDSPcanimprovetheunderstandabilityofdata,aproblemrelatedtoshadingintheimages.Preliminarymeasurementshadshownthattheperimeteroftheimagewouldbedarkerthanthecenter.Thisiscausedbyseveraleffects:howtheimageareaisscanned,thewayx-raysbackscatterfromthebody,thedetectorcharacteristics,etc.thecenteristoobright,whiletheborderistoodark,14,agreatexampleofhowDSPcanimprovetheunderstandabilityofdata.,Digitalfilteringwasabletoconverttherawimage(ontheleft)intoaprocessedimage(ontheright).ThisisTheprocessedimagecontainsthesameinformationastherawimage,butinaformtailoredtothecharacteristicsofthehumanvisualsystem.Theimprovementisobvious;lookatthebucklesontheshoes,theringonthefinger,andthesimulatedexplosiveonthechest,15,AsimpleCTsystem,passesanarrowbeamofx-raysthroughthebodyfromsourcetodetector.Thesourceanddetectorarethentranslatedtoobtainacompleteview.Theremainingviewsareobtainedbyrotatingthesourceanddetectorinabout1degreeincrements,andrepeatingthetranslationprocess.,16,Computedtomographyimage,.ThisisaCTsliceofahumanabdomen,atthelevelofthenavel.Manyorgansarevisible,suchasthe(L)Liver,(K)Kidney,(A)Aorta,(S)Spine,and(C)Cystcoveringtherightkidney.CTcanvisualizeinternalanatomyfarbetterthanconventionalmedicalx-rays.,17,Compactdiscplaybackblockdiagram,Thedigitalinformationisretrievedfromthediscwithanopticalsensor,correctedforEFMandReed-Solomonencoding,andconvertedtostereoanalogsignals.,18,Deconvolutionofoldphonographrecordings,Thefrequencyspectrumproducedbytheoriginalsinger(a).Resonancepeaksintheprimitiveequipment,(b),producedistortionintherecordedfrequencyspectrum,(c).Thefrequencyresponseofthedeconvolutionfilter,(d),isdesignedtocounteractstheundesiredconvolution,restoringtheoriginalspectrum,forillustrativepurposesonly;notactualsignals.,19,Thehumanretina视网膜,.Theretinacontainsthreeprinciplelayers:(1)therodandconelightreceptors,(2)anintermediatelayerfordatareductionandimageprocessing,and(3)theopticnervefibersthatleadtothebrain.Thestructureoftheselayersisseeminglybackward,requiringlighttopassthroughtheotherlayersbeforereachingthelightreceptors.,20,Humanspeechmodel,Overashortsegmentoftime,about2to40milliseconds,speechcanbemodeledbythreeparameters:(1)theselectionofeitheraperiodicoranoiseexcitation,(2)thepitchoftheperiodicexcitation,and(3)thecoefficientsofarecursivelinearfiltermimickingthevocaltractresponse.,21,Binaryskeletonization.Thebinaryimageofafingerprint,(a),containsridgesthataremanypixelswide.Theskeletonizedversion,(b),containsridgesonlyasinglepixelwide.,22,3x3edgemodification,Theoriginalimage,(a),wasacquiredonanairportx-raybaggagescanner.Theshiftandsubtractoperation,shownin(b),resultsinapseudothree-dimensionaleffect.,23,goodreasonsforlearningDSP,AthreestepapproachinexplainingconceptsExplaintheconceptinwords;presentthemathematics;showhowitisusedinacomputerprogram.Ifonedoesntmakesense,maybetheothertwowillhelp.SimplecomputerprogramsLookattheseexampleprograms.DigitalFilters:simpletoimplement,incredibleperformance!Checkouttheseexamples.,24,Singlepolelow-passfilter.,Digitalrecursivefilterscanmimicanalogfilterscomposedofresistorsandcapacitors.Asshowninthisexample,asinglepolelow-passrecursivefiltersmoothestheedgeofastepinput,justasanelectronicRCfilter.,25,Commonpointspreadfunctions,.Thepillbox,Gaussian,andsquare,shownin(a),(b),weareallincompetition.Up-to-datetechnologiescanmakethedifference-andDSPisoneofmostpowerful!,30,thefutureofDSPeducation,TounderstandthefutureofDSPeducation,thinkaboutanothertechnology:electronics.Ifthisisyourmainfield,youprobablytookdozensofclassesonthesubject;everythingfromtheoperationoftransistorstotheinternaldesignofintegratedcircuits.However,ifelectronicsisnotyourspecialty,youreducationwillhavebeenverydifferent.Youprobablytookoneortwoclassesinappliedelectronics.YoulearnedNyquistlaw,thedesignofsimplefilters,andotherpracticaltechniques.Youknownothingaboutelectron-holephysicsinsemiconductors,andyoudontcare!Youuseelectronicsasatooltofurtheryourresearchordesignactivities.Foreveryexpertinelectronics,thereare100scientistsandengineersthathaveabasicfamiliarlywiththepracticalapplications.ThisisthefutureofDSP.,31,ExamplesofDigitalFilters,Digitalfiltersareincrediblypowerful,buteasytouse.Infact,thisisoneofthemainreasonsthatDSPhasbecomesopopular.Asanexample,supposeweneedalow-passfilterat1kHz.Thiscouldbecarriedoutinanalogelectronicswiththefollowingcircuit:,32,Forinstance,thismightbeusedfornoisereductionorseparatingmultiplexedsignals.Asanalternative,wecoulddigitizethesignalanduseadigitalfilter.Saywesamplethesignalat10kHz.Acomparabledigitalfilteriscarriedoutbythefollowingprogram:,33,Low-passwindowed-sincfilter,%Thisprogramfilters5000sampleswitha101pointwindowed-sincfilter,resultingin4900samplesoffiltereddata.X=;%Xholdstheinputsignal%Yholdstheoutputsignal;Hholdsthefilterkernel%PI=3.14159265FC=0.1;%Thecutofffrequency(0.1ofthesamplingrate)M=100%Thefilterkernellength%CALCULATETHEFILTERKERNELFORI=1:101IF(I-M/2)=0THENH(I)=2*PI*FC;ELSEH(I)=SIN(2*PI*FC*(I-M/2)/(I-M/2);ENDH(I)=H(I)*(0.54-0.46*COS(2*PI*I/M);END,34,%FILTERTHESIGNALBYCONVOLUTIONFORJ=101:5000Y(J)=0;FORI=1:101Y(J)=Y(J)+X(J-I)*H(I)ENDEND,35,Asinthisexample,mostdigitalfilterscanbeimplementedwithonlyafewdozenlinesofcode.Howdotheanaloganddigitalfilterscompare?Herearethefrequencyresponsesofthetwofilters:,36,severalsignificantdifferencesbetweentheAFandDF,EventhoughwedesignedthedigitalfiltertoapproximatelymatchtheanalogfilterFirst,theanalogfilterhasa6%rippleinthepassband,whilethedigitalfilterisperfectlyflat(within0.02%).Theanalogdesignermightarguethattheripplecanbeselectedinthedesign;however,thismissesthepoint.Theflatnessachievablewithanalogfiltersislimitedbytheaccuracyoftheirresistorsandcapacitors.Evenifitisdesignedforzeroripple(aButterworthfilter),analogfiltersofthiscomplexitywillhavearesiduerippleof,perhaps,1%.Ontheotherhand,theflatnessofdigitalfiltersisprimarilylimitedbyround-offerror,makingthemhundredsoftimesflatterthantheiranalogcounterparts.,37,severalsignificantdifferencesbetweentheAFandDF,Next,letslookatthefrequencyresponseonalogscale(decibels),asshownbelow.Again,thedigitalfilterisclearlythevictorinbothroll-offandstopbandattenuation.,38,Eveniftheanalogperformanceisimprovedbyaddingadditionalstages,itstillcantcompetewiththedigitalfilter.Imagineyouneedtoimprovetheperformanceofthefilterbyafactorof100.Thiswouldbevirtuallyimpossiblefortheanalogcircuit,butonlyrequiressimplemodificationstothedigitalfilter.Forinstance,lookatthetwofrequencyresponsesbelow,adigitalfilterdesignedforveryfastroll-off,andadigitalfilterdesignedforexceptionalstopbandattenuation.,39,Thefrequencyresponseonthelefthasagainof1+/-0.0002fromDCto999hertz,andagainoflessthan0.0002forfrequenciesabove1001hertz.Theentiretransitionoccursinonlyabout1hertz.Thefrequencyresponseontherightisequallyimpressive:thestopbandattenuationis-150dB,onepartin30million!Donttrythiswithanopamp!Asintheseexamples,digitalfilterscanachievethousandsoftimesbetterperformancethananalogfilters.Thismakesadramaticdifferenceinhowfilteringproblemsareapproached.Withanalogfilters,theemphasisisonhandlinglimitationsoftheelectronics,suchastheaccuracyandstabilityoftheresistorsandcapacitors.Incomparison,digitalfiltersaresogoodthattheperformanceofthefilterisfrequentlyignored.Theemphasisshiftstothelimitationsofthesignals,andthetheoreticalissuesregardingtheirprocessing.,40,anotherexampleofthetremendouspowerofdigitalfilters.,Filtersusuallyhaveoneoffourbasicresponses:low-pass,high-pass,band-passorband-reject.Butwhatifyouneedsomethingreallycustom?Asanextremeexample,supposeyouneedafilterwiththefrequencyresponseshownattheright.Thisisntasfarfetchedasyoumightthink;severalareaofDSProutinelyusefrequencyresponsesthisirregular(deconvolutionandoptimalfiltering).Dontaskananalogfilterdesignertogiveyouthisfrequencyresponse-hecant!Incomparison,digitalfiltersexcelatprovidingtheseirregularcurves.,41,Astabilityproblemintheanalog-to-digitalconverterfor0.1%precision,itwasonlyan8bitdevice,incapableofachieving0.1%precision.moresevere,theanalog-to-digitalconversionwastrashedwithnoise.Asshownontheleftbelow,thedigitaloutputrandomlytoggledoveraboutadozendigitalnumbers.Thesystemshouldhavebeendesignedwith12bits;itwasdesignedwith8bits;butitoperatedwithonlyabout5bitsofusabledata.Asanygoodelectricalengineerwould,ourfirststepwastoplastertheADCwithcapacitors.Noluck-thenoisewascomingfromhighcurrentpulsesinthegroundplaneoftheelectricalpanel-verydifficulttosolve.Twomonthsminimumtoredesigntheproblemareas.Whatamess.,42,43,DSPforsolving,First,thefancyexplanation:weusedamultiratetechnique.Theoriginalsystemsampledat100samplespersecond.Weincreasedthesamplingrateto100,000samplespersecond,andthenusedadigitallow-passfiltertoeliminatethenoise.Thiswasfollowedbyadecimationtolowerthesamplingratebackto100samplespersecond.Voila!Thedigitaldatawasnowequivalenttodirectsamplingusing10bits,asshownintheabovefigureontheright.Toocomplicated?Heresasimplerexplanation.Weacquired1000sampleseach10milliseconds.Averagingthese1000readingsprovidedasinglevalueeach10millisecond,i.e.,asamplingrateof100samplespersecond.Since1000valueswereaveraged,thenoiseinthesignalwasreducedbythesquare-rootof1000,orabout32.Whilethisisaverysimpletechnique,itillustratesthetremendouspowerofDSPtoreplacehardwarewithsoftware.Inthiscase,adozenlinesofcodesavedmonthsofhardwareredesign.,44,1.1Introductionsignals,SignalsAsignalcanbedefinedasafunctionthatconveysinformation.Signalsarepresentedmathematicallyasfunctionsofoneormoreindependentvariables.forexample:aspeechsignalwouldberepresentedmathematicallyasafunctionofonetimevariable-f(t);-One-dimensional(1-D)signal一维信号apicturewouldberepresentedmathematicallyasabrightnessfunctionoftwospatialvariables-f(x,y).-Two-dimensional(2-D)signal二维信号acolorvideosignal(aRGBtelevisionsignal)isa3-Dsignal.-Multidimensional(M-D)signal多维信号,45,1.1Introductiontypesofsignals,Theindependentvariableofasignalmaybeeithercontinuousordiscrete.Continuous-timesignalsarethosethataredefinedatcontinuoustimes.Discrete-timesignalsarethosethataredefinedatdiscretetimes.Inaddition,thesignalamplitudemayalsobecontinuousordiscrete.Digitalsignalsarethoseforwhichbothtimeandamplitudearediscrete.Analogsignalsarethoseforwhichbothtimeandamplitudearecontinuous.,46,typesofsignals,(Continue-timesignal-incontinue-time),(Discrete-timesignal-indiscrete-time),Analogsignal-continuousamplitude,Digitalsignal-discreteamplitude,-Discrete-timesignal,47,1.1Introductionsystems,SystemsPhysicalsystemsinthebroadestsenseareaninterconnectionofcomponents,devices,orsubsystems.Asystemcanbeviewedasaprocessinwhichinputsignalsaretransformedbythesystemorcausethesystemtorespondinsomeway,resultinginothersignalsasoutputs.Asystemcanbedefinedmathematicallyasakindofmappingofinputsignalsintooutputsignals.,48,1.1Introductiontypesofsystems,Continuous-timesystems(连续时间系统)arethoseforwhichboththeinputandoutputarecontinuoussignals.Discrete-timesystems(离散时间系统)arethoseforwhichboththeinputandoutputarediscretesignals.Analogsystems(模拟系统)arethoseforwhichboththeinputandoutputareanalogsignals.Digitalsystems(离散系统)arethoseforwhichboththeinputandoutputaredigitalsignals.,49,1.1IntroductionmeaningsofDSP,Digitalsignalprocessingincludestwomeanings:Processingdigitalsignals.Processinganalogsignalsinadigitalway.Featuresofdigitalsignalprocessing:Highprecision(高精度)Agility(灵活)Reliability(可靠)Highperformance(高性能)Timedivisionmultiplexing(时分复用)Multi-dimensionprocessing(多维处理),50,ContentofDSP,Theoryofdiscretelineartime-invariantsystem(Includetime-domain,frequency-domain,z-domain,etc)frequencyspectrumanalysis(finiteword-lengtheffect):FFTandStatisticanalysisdesignofdigitalfilterandrealizationoffilteringtime-frequencysignalanalysis(ShortFourierTransform),WaveletAnalysis,WignerDistributionmulti-dimensionsignalprocessing(compressionandcoding,multimedia),51,ContentofDSP,返回,nonlinearsignalprocessingrandomsignalprocessingpatternrecognition,ANNDSP(DigitalSignalProcessor)andASIC(ApplicationSpecificIntegratedCircuit),realizationofdigitalsystem,52,Maincontentinthisbook,DigitalsignalandsystemZtransformandFouriertransformDiscreteFourierTransformandFFTBasicStructureofdigtalfilterDesignofdigtalfilterMultiratesystem,53,Reference,美,A.V.奥本海姆,R.W.谢非,J.R.巴克,(刘树棠,黄建国译)离散时间信号处理,西安交通大学出版社,2019(科学出版社,1982)SophoclesJ.Orfanidis,IntroductiontoSignalProcessing,Tsinghua,Beijing,2019RichardG.Lyons,UnderstandingDigitalSignalProcessing,科学出版社,2019周耀华,汪凯仁,数字信号处理,复旦大学出版社胡广书,数字信号处理理论、算法与实现,清华大学出版社宗孔德,胡广书,数字信号处理,清华大学出版社M.H.海因斯,数字信号处理,科学出版社,2019程佩青,数字信号处理教程(第二版),清华大学出版社,2019,54,ApplicationofDSP-mobile,55,ApplicationofDSP-wireless无线电,56,ApplicationofDSP-radar,57,ApplicationofDSP-fingerprintsystem,58,ApplicationofDSP-DigitalSpeaker,59,ApplicationofDSP-multimediasystemincar,60,ApplicationofDSPdigitalmotor,61,ApplicationofDSP-MP3,62,ApplicationofDSP-ADSL,(AsymmetricalDigitalSubscriberLoop,非对称数字用户环线),63,ApplicationofDSP-modulatorofADSL,64,ApplicationofDSP-videocamerafornetworksecure,65,ApplicationofDSP-networkaudiodevice,66,ApplicationofDSP-monitorsysteminhospital,67,ApplicationofDSP-digitalscanner,68,ApplicationofDSP-Set-TopBox机顶盒STB,返回,2Discrete-TimeSignalsandsystems,70,2.1Discrete-timesignalsnotations,Adiscrete-timesignalcanberepresentedasasequenceofnumbers.Forexample,thesequencexcanberepresentedaswhereZisthesetofintegernumbers,andx(n)isreferredtoasthe“nthsample”ofthesequence.Aconvenientnotationforthesequencexjustisx(n).AnothernotationiswhereTistimeintervalbetweensamples.Eachsampleofsequencex(nT)isdeterminedbytheamplitudeofsignalatinstantnT.,71,2.1Discrete-timesignalsgraph,Discrete-timesignalsareoftendepictedgraphically.,72,2.1.1operationonsequences,AdditionMultiplicationScalarmultiplicationAccumulationTime-shiftingReflectionDifferenceTime-scaling,73,2.2somefamiliarsequences,Unitimpulse(sample)UnitstepUnitrampRectangularExponentialRealComplexSine/cosinesequence,74,2.2.1Discrete-timesignalsunitimpulse,Thedefinitionoftheunitimpulse,75,delayedunitimpulse,Thedefinitionofthedelayedunitimpulse,76,2.2.1Discrete-timesignalsunitstep,Thedefinitionoftheunitstep,77,2.2.1Discrete-timesignalscosinefunction,Thedefinitionofthecosinefunctionisx(n)=cos(n),whoseangularfrequencyisrad/sample.,78,Realexponentialfunction,Thedefinitionoftherealexponentialfunctionisx(n)=ean.Thecomplexexponentialfunction,79,ExamplesofExponentialSequence,A:realexponentialsequenceB:realexponentialsequenceC:complexexponentialsequence,80,2.2.1Discrete-timesignalsunitramp,Thedefinitionoftheunitramp,81,2.2.2Discrete-timesignals,Anarbitrarysequencecanbeexpressedasasumofscaled,delayedunitimpulses.Theunitstepu(n)canbeexpressedasAndtheunitrampr(n)canbeexpressedas,82,Example:generatethesignalwithimpulsesequence,83,2.2.3Periodicsequence,Asequencex(n)isdefinedtobeperiodicwithperiodNifandonlyifx(n)=x(n+N)foralln.Note,notalldiscretecosinefunctionsareperiodic.If2/isanintegerorarationa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大专工商企业管理学什么
- 教师个人教学教研工作总结
- 绿化春季种植培训课件
- 美食城培训课件
- 重症喘息性肺炎诊疗规范
- 监理资料培训讲义
- 建议类考试题及答案
- 肩颈考试题及答案
- 驾驶知识考试题及答案
- 新初一课程培训
- 超声诊断设备行业营销策略方案
- 江西省九江市2023–2024学年八年级下学期期末考试道德与法治试题(无答案)
- 2025届湖南省长郡中学、雅礼中学等四校高一物理第二学期期末经典试题含解析
- 野外钻探施工危险源辨识及风险评价表
- 保健食品经营质量管理规范
- 医疗器械的风险管理培训
- 2024年湖南省公安厅机关警务辅助人员招聘笔试参考题库附带答案详解
- 中华民族共同体概论课件专家版7第七讲 华夷一体与中华民族空前繁盛(隋唐五代时期)
- 青春期的妇科知识讲座
- 中考语文二轮专题复习《诗歌赏析之情感把握复习》公开课一等奖创新教学设计
- 2023起重机械安全技术规程
评论
0/150
提交评论