




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.2016年全国文科数学试题(全国卷1)第I卷(选择题)1设集合,则(A)1,3 (B)3,5 (C)5,7 (D)1,7【答案】B【解析】试题分析:集合与集合公共元素有3,5,故,选B.考点:集合运算2设的实部与虚部相等,其中a为实数,则a=(A)3 (B)2 (C)2 (D)3【答案】A【解析】试题分析:设,由已知,得,解得,选A.考点:复数的概念3为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A) (B) (C) (D)【答案】A【解析】试题分析:将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为,选A.考点:古典概型4ABC的内角A、B、C的对边分别为a、b、c.已知,则b=(A) (B) (C)2 (D)3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D.考点:余弦定理5直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(A) (B) (C) (D)【答案】B【解析】试题分析:如图,由题意得在椭圆中,在中,且,代入解得,所以椭圆得离心率得:,故选B.yxOBFD考点:椭圆的几何性质6若将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为(A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x) (D)y=2sin(2x)【答案】D【解析】试题分析:函数的周期为,将函数的图像向右平移个周期即个单位,所得函数为,故选D.考点:三角函数图像的平移7如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17 (B)18 (C)20 (D)28 【答案】A【解析】试题分析:由三视图知:该几何体是个球,设球的半径为,则,解得,所以它的表面积是,故选A考点:三视图及球的表面积与体积8若ab0,0c1,则(A)logaclogbc (B)logcalogcb (C)acbc (D)cacb【答案】B【解析】试题分析:对于选项A:,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B:,而,两边同乘以一个负数改变不等号方向所以选项B正确;对于选项C:利用在第一象限内是增函数即可得到,所以C错误;对于选项D:利用在上为减函数易得为错误.所以本题选B.考点:指数函数与对数函数的性质9函数y=2x2e|x|在2,2的图像大致为(A)(B)(C)(D)【答案】D【解析】试题分析:函数f(x)=2x2e|x|在2,2上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选D10执行右面的程序框图,如果输入的n=1,则输出的值满足(A)(B)(C)(D)【答案】C【解析】试题分析:第一次循环:,第二次循环:,第三次循环:,此时满足条件,循环结束,满足故选C考点:程序框图与算法案例11平面过正文体ABCDA1B1C1D1的顶点A,,则m,n所成角的正弦值为(A) (B) (C) (D)【答案】A【解析】试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为所成的角,即为,故所成角的正弦值为,选A.考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.12若函数在单调递增,则a的取值范围是(A) (B) (C) (D)【答案】C【解析】试题分析:对恒成立,故,即恒成立,即对恒成立,构造,开口向下的二次函数的最小值的可能值为端点值,故只需保证,解得故选C考点:三角变换及导数的应用第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)13设向量a=(x,x+1),b=(1,2),且a b,则x= .【答案】【解析】试题分析:由题意, 考点:向量的数量积及坐标运算14已知是第四象限角,且sin(+)=,则tan()= .【答案】【解析】试题分析:由题意,得.正方体的对角线等于其外接球的直径,所以,故选A.考点:三角变换15设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为 .【答案】【解析】试题分析:圆,即,圆心为,由到直线的距离为,所以由得所以圆的面积为.考点:直线与圆16某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元 .【答案】【解析】试题分析:设生产产品、产品分别为、件,利润之和为元,那么 目标函数.二元一次不等式组等价于 作出二元一次不等式组表示的平面区域(如图),即可行域.将变形,得,平行直线,当直线经过点时, 取得最大值.解方程组,得的坐标.所以当,时,.故生产产品、产品的利润之和的最大值为元.考点:线性规划的应用评卷人得分三、解答题(题型注释)17已知是公差为3的等差数列,数列满足,.()求的通项公式;()求的前n项和.【答案】()()【解析】试题分析:()用等差数列通项公式求;()求出通项,再利用等比数列求和公式来求。试题解析:()由已知,得得,所以数列是首项为2,公差为3的等差数列,通项公式为.()由()和 ,得,因此是首项为1,公比为的等比数列.记的前项和为,则考点:等差数列与等比数列18如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.()证明G是AB的中点;()在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积【答案】()见解析()作图见解析,体积为【解析】试题分析:证明由可得是的中点.()在平面内,过点作的平行线交于点,即为在平面内的正投影.根据 正三棱锥的侧面是直角三角形且,可得 在等腰直角三角形中,可得四面体的体积试题解析:()因为在平面内的正投影为,所以因为在平面内的正投影为,所以所以平面,故又由已知可得,从而是的中点. ()在平面内,过点作的平行线交于点,即为在平面内的正投影.理由如下:由已知可得,又,所以,因此平面,即点为在平面内的正投影.连接,因为在平面内的正投影为,所以是正三角形的中心.由()知,是的中点,所以在上,故由题设可得平面,平面,所以,因此由已知,正三棱锥的侧面是直角三角形且,可得 在等腰直角三角形中,可得所以四面体的体积考点:线面位置关系及几何体体积的结束19某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.()若=19,求y与x的函数解析式;()若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;()假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】()()19()19【解析】试题分析:()分x19及x.19,分别求解析式;()通过频率大小进行比较;()分别求出您9,n=20的所需费用的平均数来确定。试题解析:()当时,;当时,所以与的函数解析式为.()由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故的最小值为19.()若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.考点:函数解析式、概率与统计20在直角坐标系中,直线l:y=t(t0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.()求;()除H以外,直线MH与C是否有其它公共点?说明理由.【答案】()2()没有【解析】试题分析:先确定,的方程为,代入整理得,解得,因此,所以为的中点,即.()直线的方程为,与联立得,解得,即直线与只有一个公共点,所以除以外直线与没有其它公共点.试题解析:()由已知得,.又为关于点的对称点,故,的方程为,代入整理得,解得,因此.所以为的中点,即.()直线与除以外没有其它公共点.理由如下:直线的方程为,即.代入得,解得,即直线与只有一个公共点,所以除以外直线与没有其它公共点.考点:直线与抛物线21已知函数.()讨论的单调性;()若有两个零点,求的取值范围.【答案】()见解析()【解析】试题分析:()求导,根据导函数的符号来确定,主要要根据导函数零点来分类;()借组第一问的结论来,通过分类判断得a的取值范围为.试题解析:()(i)设,则当时,;当时,.所以在单调递减,在单调递增.(ii)设,由得x=1或x=ln(-2a).若,则,所以在单调递增.若,则ln(-2a)1,故当时,;当时,所以在单调递增,在单调递减.若,则,故当时,当时,所以在单调递增,在单调递减.()(i)设,则由(I)知,在单调递减,在单调递增.又,取b满足b0且,则,所以有两个零点.(ii)设a=0,则所以有一个零点.(iii)设a0,若,则由(I)知,在单调递增.又当时,0,故不存在两个零点;若,则由(I)知,在单调递减,在单调递增.又当时0,故不存在两个零点.综上,a的取值范围为.考点:函数单调性,导数应用22选修4-1:几何证明选讲如图,OAB是等腰三角形,AOB=120.以O为圆心,OA为半径作圆.()证明:直线AB与O相切;()点C,D在O上,且A,B,C,D四点共圆,证明:ABCD. 【答案】()见解析()见解析【解析】试题分析:()设是的中点,证明;() 设是四点所在圆的圆心,作直线,证明,由此可证明试题解析:()设是的中点,连结,因为,所以,在中,即到直线的距离等于圆的半径,所以直线与相切()因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以同理可证,所以考点:四点共圆、直线与圆的位置关系及证明23选修44:坐标系与参数方程在直角坐标系xy中,曲线C1的参数方程为(t为参数,a0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=.()说明C1是哪一种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a【答案】()圆,()1【解析】试题分析:()把化为直角坐标方程,在化为极坐标方程; ():,:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025蚌埠市房屋租赁合同样本
- 2025专业推拿按摩技师承包合同书
- 2025-2026学年统编版小学三年级上册语文第五单元测试卷及答案(三套)
- 2025年所有英语高考试卷及答案
- 2025年天津学法减分题库及答案
- 2025汽车买卖合同完整样式
- 医院政府会计试题及答案
- 2025房屋买卖合同样本
- 抹灰施工方案中人员配备
- 科学教育自考试题及答案
- 隧道施工应急预案方案
- 植物鉴赏课件
- 安徽省华师联盟2026届高三上学期9月开学质量检测物理试卷(含答案)
- 航海船舶航线选择指南
- 2025年中小学校长岗位竞聘面试题库及答案
- 2025年中国心血管病报告
- 职业教育课题申报:产教融合背景下职业院校“四位一体”校企合作模式研究与实践
- 效益工资发放审批表
- 土壤的环境背景值与容量
- GB/T 26399-2011电力系统安全稳定控制技术导则
- 电动葫芦检查安装检查验收使用表格
评论
0/150
提交评论