




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
16.3可化为一元一次方程的分式方程,复习提问,1、什么叫做方程?什么是一元一次方程?什么是方程的解?,2、解一元一次方程的步骤是什么?,3、分式有意义的条件是什么?,4、分式的基本性质是怎样的?,轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.,分析:设轮船在静水中的速度为x千米/时,根据题意,得,这个方程有何特点?,引入问题,想一想,概括:方程(1)有何特点?观察分析后,发表意见,达成共识:,提问:你还能举出一个类似的例子吗?,特征:方程的两边的代数式是分式。或者说分母中含有未知数的方程。,分式方程的主要特征:(1)含有分式;(2)分母中含有未知数。,方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.,你还能举出一个分式方程的吗?,分式方程的概念,例题讲解与练习,辨析:判断下列各式哪个是分式方程?,下列方程哪些是分式方程:,探究分式方程的解法,1、思考:分式方程怎样解呢?为了解决本问题,请同学们先思考并回答以下问题:1)回顾一下一元一次方程时是怎么去分母的,从中能否得到一点启发?2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢?,试动手解一解方程解:方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)=60(x+3).解这个整式方程,得x=21.所以轮船在静水中的速度为21千米/时.,探究分式方程的解法,2、概括上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.,探究分式方程的解法,例题讲解与练习,例1解方程:,.解:方程两边同乘以(x2-1),约去分母,得x+1=2.解这个整式方程,得x=1.事实上,当x=1时,原分式方程左边和右边的分母(x1)与(x21)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的根,应当舍去.所以原分式方程无解.,在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.,那么,可能产生“增根”的原因在哪里呢?,探究分式方程的增根原因,探究分式方程的增根原因,对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求.如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,即是原分式方程的增根.,探究分式方程的验根方法,验根的方法解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.如例1中的x=1,代入x210,可知x=1是原分式方程的增根.,有了上面的经验,我们再来完整地解二个分式方程.,例题讲解与练习,例2解方程:,解:,方程两边同乘以,检验:把x=5代入x-4,得x-40,x=5是原方程的解.,例题讲解与练习,(2),方程两边同乘以,检验:把x=-2代入x2-4,得x2-4=0。,x=-2是增根,所以原方程无解。.,注意:分式方程的求根过程不一定是同解变形,所以分式方程一定要验根!,例题讲解与练习,例3解方程:,解:,方程两边分别通分,经检验是原方程的根,原方程的根是.,所以,解得,例4.当a为何值时,方程有增根?,解:去分母,方程两边同乘以,解这个整式方程,得,因为方程有增根,所以,所以,所以当,时,原方程产生增根.,1.判断:,做一做,做一做,2.解下列分式方程:,做一做,3.解下列分式方程:,学习小结,1、你学到了哪些知识?要注意什么问题?,2、在学习的过程中你有什么体会?,1、什么是分式方程?举例说明.2、解分式方程的一般步骤:a、在方程的两边都乘以最简公分母,约去分母,化为整式方程;b、解这个整式方程;c、检验,即把整式方程的根代入最简公分母,看结果是否等于零,若最简公分母不等于零,则是原方程的根,否则就是原方程的增根,必须舍去3、解分式方程为什么要进行验根?怎样进行验根?,课堂小结,验根的方法有两种:代入原方程检验法和代入最简公分母检验法.(1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根,必须舍去。(2)代入最简公分母检验,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,若其值不为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前台人员工作总结5篇
- 2025年医院药品采购合同
- 湖南物理中考试题及答案
- 中职数字面试题库及答案
- DB65T 3800-2015 马流产沙门氏菌微量凝集检验方法
- 管理学试题及答案大一
- 2025年智能仓储机器人任务分配与智能决策支持系统开发
- 3.2 弹力教学设计-2025-2026学年高中物理上海科教版共同必修1-沪教版2007
- 2025私人借款协议范本-个人之间的贷款合同范本
- 中级化妆考试题库及答案
- 公证与婚姻家庭事务
- 产业园区运营模式(课件)
- 信息可视化设计全套教学课件
- 口腔粘膜病课件
- 关于PedSQL-4.0儿童生存质量测定量表调查
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
评论
0/150
提交评论