3.2.1--古典概型_第1页
3.2.1--古典概型_第2页
3.2.1--古典概型_第3页
3.2.1--古典概型_第4页
3.2.1--古典概型_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2古典概型3.2.1古典概型,试验2:掷一颗均匀的骰子一次,观察出现的点数有哪几种结果?,试验1:掷一枚质地均匀的硬币一次,观察出现哪几种结果?,一次试验可能出现的每一个结果称为一个,基本事件.,基本事件,【课堂探究1】,问题:(1)在一次试验中,会同时出现“1点”与“2点”这两个基本事件吗?,(2)事件“出现偶数点”包含哪几个基本事件?,“2点”“4点”“6点”,不会.,任何两个基本事件是互斥的.,任何事件(除不可能事件)都可以表示成基本事件的和.,事件“出现的点数不大于4”包含哪几个基本事件?,“1点”“2点”“3点”“4点”,例1从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来.,树状图,解:所求的基本事件共有6个:,古典概型上述试验和例1的共同特点是:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.,【课堂探究2】,(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?,不是古典概型.,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.,(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环命中5环和不中环.你认为这是古典概型吗?为什么?因为虽然试验的所有可能结果只有有限个,而命中10环、命中9环命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.,不是古典概型.,古典概型的概率求法在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?,对于掷均匀硬币试验,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”).,【课堂探究3】,掷骰子中,出现各个点的概率相等,P(“1点”)P(“2点”)P(“3点”)P(“4点”)P(“5点”)P(“6点”).利用概率的加法公式,我们有P(“1点”)P(“2点”)P(“3点”)P(“4点”)P(“5点”)P(“6点”)P(必然事件)1.,所以P(“1点”)P(“2点”)P(“3点”)P(“4点”)P(“5点”)P(“6点”)P(“出现偶数点”)P(“2点”)P(“4点”)P(“6点”),对于古典概型,任何事件的概率计算公式为:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.,【提升总结】,例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?,解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案,选择A,B,C,D的可能性是相等的.从而由古典概型的概率计算公式得,?,在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?基本事件为(A),(B),(C),(D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),(A,B,C),(A,B,D),(A,C,D),(B,C,D),(A,B,C,D).答对的概率为,例3同时掷两个骰子,计算向上的点数之和是5的概率是多少?解:掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种,向上的点数之和为5的结果(记为事件A)有4种.由于所有36种结果是等可能的,因此,由古典概型的概率计算公式可得,思考:你能列出这36个结果吗?(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),此时概率为,古典概型的应用例4假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?,【课堂探究4】,解:一个密码相当于一个基本事件,总共有10000个基本事件.它们分别是0000,0001,0002,,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码构成.所以P(“试一次密码就能取到钱”),例5某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记为1,2,3,4,不合格的2听分别记作a,b.只要两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论