neuralnets-2012-001 08_Lecture8 neuralnets-2012-001 08_Lecture8 01_A_brief_overview_of_Hessian_Free_optimization_第1页
neuralnets-2012-001 08_Lecture8 neuralnets-2012-001 08_Lecture8 01_A_brief_overview_of_Hessian_Free_optimization_第2页
neuralnets-2012-001 08_Lecture8 neuralnets-2012-001 08_Lecture8 01_A_brief_overview_of_Hessian_Free_optimization_第3页
neuralnets-2012-001 08_Lecture8 neuralnets-2012-001 08_Lecture8 01_A_brief_overview_of_Hessian_Free_optimization_第4页
neuralnets-2012-001 08_Lecture8 neuralnets-2012-001 08_Lecture8 01_A_brief_overview_of_Hessian_Free_optimization_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

WARNING:OPTIONALEXTRAMATERIAL,Thematerialinthisvideoisconsiderablymoredifficultthaninmostoftheothervideos.IhaveincludeditforthosewhowanttogetsomeideaofhowtheHFoptimizerworks.YoudonotneedtounderstandhowHFworksinordertounderstandtheremainingvideosinlecture8.Thequestionsintheweeklyquizandthefinaltestwillnotbeaboutthematerialinthisvideo,soyoucansafelyskipitifyouwant.,NeuralNetworksforMachineLearningLecture8aAbriefoverviewof“Hessian-Free”optimization,Howmuchcanwereducetheerrorbymovinginagivendirection?,Ifwechooseadirectiontomoveinandwekeepgoinginthatdirection,howmuchdoestheerrordecreasebeforeitstartsrisingagain?Weassumethecurvatureisconstant(i.e.itsaquadraticerrorsurface).Assumethemagnitudeofthegradientdecreasesaswemovedownthegradient(i.e.theerrorsurfaceisconvexupward).Themaximumerrorreductiondependsontheratioofthegradienttothecurvature.Soagooddirectiontomoveinisonewithahighratioofgradienttocurvature,evenifthegradientitselfissmall.Howcanwefinddirectionslikethese?,betterratio,Newtonsmethod,Thebasicproblemwithsteepestdescentonaquadraticerrorsurfaceisthatthegradientisnotthedirectionwewanttogoin.Iftheerrorsurfacehascircularcross-sections,thegradientisfine.Soletsapplyalineartransformationthatturnsellipsesintocircles.Newtonsmethodmultipliesthegradientvectorbytheinverseofthecurvaturematrix,H:Onarealquadraticsurfaceitjumpstotheminimuminonestep.Unfortunately,withonlyamillionweights,thecurvaturematrixhasatrilliontermsanditistotallyinfeasibletoinvertit.,CurvatureMatrices,Eachelementinthecurvaturematrixspecifieshowthegradientinonedirectionchangesaswemoveinsomeotherdirection.Theoff-diagonaltermscorrespondtotwistsintheerrorsurface.Thereasonsteepestdescentgoeswrongisthatthegradientforoneweightgetsmessedupbythesimultaneouschangestoalltheotherweights.Thecurvaturematrixdeterminesthesizesoftheseinteractions.,ijk,ijk,Howtoavoidinvertingahugematrix,Thecurvaturematrixhastoomanytermstobeofuseinabignetwork.Maybewecangetsomebenefitfromjustusingthetermsalongtheleadingdiagonal(LeCun).Butthediagonaltermsareonlyatinyfractionoftheinteractions(theyaretheself-interactions).ThecurvaturematrixcanbeapproximatedinmanydifferentwaysHessian-freemethods,LBFGS,IntheHFmethod,wemakeanapproximationtothecurvaturematrixandthen,assumingthatapproximationiscorrect,weminimizetheerrorusinganefficienttechniquecalledconjugategradient.Thenwemakeanotherapproximationtothecurvaturematrixandminimizeagain.ForRNNsitsimportanttoaddapenaltyforchanginganyofthehiddenactivitiestoomuch.,Conjugategradient,Thereisanalternativetogoingtotheminimuminonestepbymultiplyingbytheinverseofthecurvaturematrix.Useasequenceofstepseachofwhichfindstheminimumalongonedirection.Makesurethateachnewdirectionis“conjugate”tothepreviousdirectionssoyoudonotmessuptheminimizationyoualreadydid.“conjugate”meansthatasyougointhenewdirection,youdonotchangethegradientsinthepreviousdirections.,Apictureofconjugategradient,Thegradientinthedirectionofthefirststepiszeroatallpointsonthegreenline.Soifwemovealongthegreenlinewedontmessuptheminimizationwealreadydidinthefirstdirection.,Whatdoesconjugategradientachieve?,AfterNsteps,conjugategradientisguaranteedtofindtheminimumofanN-dimensionalquadraticsurface.Why?AftermanylessthanNstepsithastypicallygottheerrorveryclosetotheminimumvalue.Conjugategradientcanbeapplieddirectlytoanon-quadraticerrorsurfaceanditusuallyworksquitewell(non-linearconjugategrad.)TheHFoptimizerusesconjugategradientforminimizationonagenuinelyquadraticsurfacewhereitexcels.Thegenuinelyquadraticsurfaceisthequadraticapproximationtothetruesurface.,NeuralNetworksforMachineLearningLecture8bModelingcharacterstringswithmultiplicativeconnections,Modelingtext:Advantagesofworkingwithcharacters,Thewebiscomposedofcharacterstrings.Anylearningmethodpowerfulenoughtounderstandtheworldbyreadingtheweboughttofindittrivialtolearnwhichstringsmakewords(thisturnsouttobetrue,asweshallsee).Pre-processingtexttogetwordsisabighassleWhataboutmorphemes(prefixes,suffixesetc)Whataboutsubtleeffectslike“sn”words?WhataboutNewYork?WhataboutFinnishymmartamattomyydellansakaan,.,.,.,.,.,.,.,.,Anobviousrecurrentneuralnet,1500hiddenunits,character:1-of-86,1500hiddenunits,c,predicteddistributionfornextcharacter.,Itsaloteasiertopredict86charactersthan100,000words.,softmax,Asub-treeinthetreeofallcharacterstrings,IfthenodesareimplementedashiddenstatesinanRNN,differentnodescansharestructurebecausetheyusedistributedrepresentations.Thenexthiddenrepresentationneedstodependontheconjunctionofthecurrentcharacterandthecurrenthiddenrepresentation.,.fix,fixi,fixin,i,e,n,InanRNN,eachnodeisahiddenstatevector.Thenextcharactermusttransformthistoanewnode.,fixe,ThereareexponentiallymanynodesinthetreeofallcharacterstringsoflengthN.,Multiplicativeconnections,Insteadofusingtheinputstotherecurrentnettoprovideadditiveextrainputtothehiddenunits,wecouldusethecurrentinputcharactertochoosethewholehidden-to-hiddenweightmatrix.Butthisrequires86x1500 x1500parametersThiscouldmakethenetoverfit.Canweachievethesamekindofmultiplicativeinteractionusingfewerparameters?Wewantadifferenttransitionmatrixforeachofthe86characters,butwewantthese86character-specificweightmatricestoshareparameters(thecharacters9and8shouldhavesimilarmatrices).,Usingfactorstoimplementmultiplicativeinteractions,Wecangetgroupsaandbtointeractmultiplicativelybyusing“factors”.Eachfactorfirstcomputesaweightedsumforeachofitsinputgroups.Thenitsendstheproductoftheweightedsumstoitsoutputgroup.,vectorofinputstogroupc,scalarinputtoffromgroupb,scalarinputtoffromgroupa,Groupb,Groupa,Groupc,Usingfactorstoimplementasetofbasismatrices,Wecanthinkaboutfactorsanotherway:Eachfactordefinesarank1transitionmatrixfromatoc.,scalarcoefficient,outerproducttransitionmatrixwithrank1,Groupb,Groupa,Groupc,1500hiddenunits,character:1-of-86,Using3-wayfactorstoallowacharactertocreateawholetransitionmatrix,predicteddistributionfornextcharacter,1500hiddenunits,Eachfactor,f,definesarankonematrix,Eachcharacter,k,determinesagainforeachofthesematrices.,k,NeuralNetworksforMachineLearningLecture8cLearningtopredictthenextcharacterusingHF,Trainingthecharactermodel,IlyaSutskeverused5millionstringsof100characterstakenfromwikipedia.Foreachstringhestartspredictingatthe11thcharacter.UsingtheHFoptimizer,ittookamonthonaGPUboardtogetareallygoodmodel.IlyascurrentbestRNNisprobablythebestsinglemodelforcharacterprediction(combinationsofmanymodelsdobetter).Itworksinaverydifferentwayfromthebestothermodels.Itcanbalancequotesandbracketsoverlongdistances.Modelsthatrelyonmatchingpreviouscontextscannotdothis.,Howtogeneratecharacterstringsfromthemodel,Startthemodelwithitsdefaulthiddenstate.Giveita“burn-in”sequenceofcharactersandletitupdateitshiddenstateaftereachcharacter.Thenlookattheprobabilitydistributionitpredictsforthenextcharacter.Pickacharacterrandomlyfromthatdistributionandtellthenetthatthiswasthecharacterthatactuallyoccurred.i.e.tellitthatitsguesswascorrect,whateveritguessed.Continuetoletitpickcharactersuntilbored.Lookatthecharacterstringsitproducestoseewhatit“knows”.,HewaselectedPresidentduringtheRevolutionaryWarandforgaveOpusPaulatRome.TheregimeofhiscrewofEngland,isnowArabwomensiconsinandthedemonsthatusesomethingbetweenthecharacterssistersinlowercoiltrainswerealwaysoperatedonthelineoftheephemerablestreet,respectively,thegraphicorotherfacilityfordeformationofagivenproportionoflargesegmentsatRTUS).TheBeverychordwasastronglycoldinternalpalettepoureventhewhiteblade.”,Somecompletionsproducedbythemodel,Sheilathrunges(mostfrequent)Peoplethrunge(mostfrequentnextcharacterisspace)Shiela,ThrungelinidelRey(firsttry)Themeaningoflifeisliteraryrecognition.(6thtry)Themeaningoflifeisthetraditionoftheancienthumanreproduction:itislessfavorabletothegoodboyforwhentoremoveherbigger.(oneofthefirst10triesforamodeltrainedforlonger).,Whatdoesitknow?,Itknowsahugenumberofwordsandalotaboutpropernames,dates,andnumbers.Itisgoodatbalancingquotesandbrackets.Itcancountbrackets:none,one,manyItknowsalotaboutsyntaxbutitsveryhardtopindownexactlywhatformthisknowledgehas.Itssyntacticknowledgeisnotmodular.ItknowsalotofweaksemanticassociationsE.g.itknowsPlatoisassociatedwithWittgensteinandcabbageisassociatedwithvegetable.,RNNsforpredictingthenextword,TomasMikolovandhiscollaboratorshaverecentlytrainedquitelargeRNNsonquitelargetrainingsetsusingBPTT.Theydobetterthanfeed-forwardneuralnets.Theydobetterthanthebestothermodels.Theydoevenbetterwhenaveragedwithothermodels.RNNsrequiremuchlesstrainingdatatoreachthesamelevelofperformanceasothermodels.RNNsimprovefasterthanothermethodsasthedatasetgetsbigger.Thisisgoingtomakethemveryhardtobeat.,NeuralNetworksforMachineLearningLecture8dEchostatenetworks,Thekeyideaofechostatenetworks(perceptronsagain?),Averysimplewaytolearnafeedforwardnetworkistomaketheearlylayersrandomandfixed.Thenwejustlearnthelastlayerwhichisalinearmodelthatusesthetransformedinputstopredictthetargetoutputs.Abigrandomexpansionoftheinputvectorcanhelp.,TheequivalentideaforRNNsistofixtheinputhiddenconnectionsandthehiddenhiddenconnectionsatrandomvaluesandonlylearnthehiddenoutputconnections.Thelearningisthenverysimple(assuminglinearoutputunits).ItsimportanttosettherandomconnectionsverycarefullysotheRNNdoesnotexplodeordie.,SettingtherandomconnectionsinanEchoStateNetwork,Setthehiddenhiddenweightssothatthelengthoftheactivityvectorstaysaboutthesameaftereachiteration.Thisallowstheinputtoechoaroundthenetworkforalongtime.Usesparseconnectivity(i.e.setmostoftheweightstozero).Thiscreateslotsoflooselycoupledoscillators.,Choosethescaleoftheinputhiddenconnectionsverycarefully.Theyneedtodrivethelooselycoupledoscilla

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论