




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录第一章2A12铝合金概述2第二章2A12铝合金材料成分和力学性能2212A12铝合金材料成分2222A12铝合金力学性能3第三章2A12铝合金材料焊接性分析331焊缝中的气孔3311熔焊时形成气孔的原因3312防止焊缝气孔的途径432焊接热裂纹6321铝合金焊接热裂纹的特点及形成原因6322防止焊接热裂纹的途径733焊接接头的“等强性”934焊接接头的耐蚀性1035其他焊接缺陷11第四章2A12铝合金平板对接焊接工艺1141焊前准备和预热11411化学清理12412机械清理12413焊前预热12414垫板1242焊接方法1343坡口设计1444焊接材料1545焊接参数1546焊接变形及控制164焊后处理16471清理残渣16472焊件的表面处理17473焊后热处理2048焊缝的整形和焊缝缺陷的返修20第五章2A12铝合金平板对接焊缝质量及探伤要求2051表面质量2152无损检测(RT)21第六章2A12铝合金焊接工艺卡22参考文献23第一章2A12铝合金概述2A12(LY12)硬铝合金是一种共晶型高强度硬铝合金,属于ALCUMG系合金,2A12是一种极易被氧化的材料,在空气中容易与氧结合生成紧密结实的A12O3氧化薄膜厚度约01M。这些薄膜的熔点高达2050,密度3950KGM410KGM,约为铝的14倍,它会吸附水分,在焊接过程中形成气孔、夹渣等缺陷,从而降低了焊接接头的力学性能。可进行热处理强化,在退火和刚淬火状态下塑性中等,电焊焊接良好,用气焊和氩弧焊时有形成晶间裂纹的倾向,在淬火和冷作硬化后的可切削性尚好,退火后可切削性低;抗蚀性不高,常采用阳极氧化处理与涂漆方法或表面加包铝层以提高其抗腐蚀能力。由于密度小、强度高、耐蚀性好、无磁性、成形性好以及低温性能好等特点而广泛应用于工业领域。具有优良的综合力学性能,有利于结构件的轻量化,在航空、航天、舰船制造等领域。用于制造各种承受高载荷的零件和结构件,如飞机的骨架、蒙皮、翼肋、翼梁、隔框零件铆钉等在150以下工作的零件。在制作高载荷零件时有被LC4取代的趋势。第二章2A12铝合金材料成分和力学性能2A12铝合金为变形铝合金,属于热处理强化、ALCUMG系合金。212A12铝合金材料成分经查标准GB/T31901996,2A12铝合金的化学成分具体数值见表12A12(LY12)硬铝合金是一种共晶型高强度硬铝合金,属于ALCUMG系合金。222A12铝合金力学性能经查标准GB/T31901996,2A12铝合金的化学成分具体数值见表2表22A12铝合金的力学性能材料状态抗拉强度S/MPA屈服强度B/MPA伸长率断面收缩率硬度HBW淬火自然时效退火包铝的,淬火自然时效包铝的,退火4702104301803301103001001718181830551054210542第三章2A12铝合金材料焊接性分析2A12LY12是典型的硬铝合金,合金系统是ALCUMG,它的焊接性较差。31焊缝中的气孔2A12铝合金熔焊时最常见的焊接缺陷就是焊缝气孔。311熔焊时形成气孔的原因氢是铝及铝合金熔焊时产生气孔的主要原因,氢的来源是弧柱气氛中的水分、焊接材料以及母材表面氧化膜所吸附的水分对焊缝气孔的产生有重要的影响。由于液态铝合金溶解氢的能力很强,在凝固过程中氢来不及析出而聚集在焊缝中形成气孔。(1)弧柱气氛中水分的影响。弧柱气氛中的氢之所以能使焊缝形成气孔,与它在铝中的溶解度有很大的关系。由图31可见,平衡条图31氢在铝中的溶解度(PH2101KPA)件下氢的溶解度沿图中的实线变化,凝固点时可从069ML/100G突降到0036ML/100G,相差约20倍(在钢中只相差不到2倍),这是氢易使铝焊缝产生气孔的重要原因之一。弧柱空间或多或少存在一定量的水分,尤其在潮湿季节或湿度大的地区进行焊接时,由弧柱气氛中水分分解而来的氢,溶入过热的熔融金属中,凝固时来不及析出成为焊缝气孔。这是形成的气孔具有白亮内壁的特征。MIG焊时,焊丝以细小熔滴形式通过弧柱落入熔池,由于弧柱温度高,熔滴比表面积大,熔滴金属易于吸收氢。而且在焊接2A12铝合金时保护气体中的含水量也是非常重要的,一般需要小于008才能使焊接时过渡到焊缝中的氢含量更少。(2)氧化膜中水分的影响。在正常的焊接条件下,对于气氛中的水分已严格控制,这时,焊丝或工件氧化膜中所吸附的水分将是生成焊缝气孔的主要原因。氧化膜不致密、吸水性强的铝合金(如ALMG合金),比氧化膜致密的纯铝具有更大的气孔倾向。因为ALMG合金的氧化膜由A12O3和MGO构成,而MGO越多,形成的氧化膜越不致密,更易于吸附水分;纯铝的氧化膜只由A12O3构成,比较致密,相对来说吸水性要小。MIG焊时,由于熔深大,坡口端部的氧化膜能迅速熔化,有利于氧化膜中水分的排除,氧化膜对焊缝气孔的影响就小很多。3焊接方法的影响。MIG焊时,焊丝以细小熔滴形式向熔池过渡,弧柱温度高,熔滴比表面积大,熔滴易于吸氢;TIG焊时,主要是熔池金属表面与氢反应,比表面积小,熔池温度小于弧柱,吸氢条件不如MIG有利;另外,MIG焊熔池深度大于TIG焊,不利于氢气泡的逸出。(4)极性的影响。TIG焊时,直流反接,具有阴极雾化作用,可以避免氢的产生,但钨极易烧损,形成缺陷;正接时无阴极雾化作用,熔深大,对气泡逸出不利,所以采用交流。MIG焊时,采用直流反接,无阴极雾化作用,也没有钨极烧损。(5)焊接工艺参数。焊接规范主要影响熔池在高温的停留时间,从而对氢的溶入时间和析出时间产生影响。TIG焊时,采用小线能量,采用较大的规范,高的焊速,减少熔池存在时间,减小氢的溶入;MIG焊时,焊丝氧化膜的影响更为显著,不能通过减少熔池时间来防止氢向熔池的溶入,所以通过降低焊速和提高焊接线能量来增大溶池存在时间,有利于减少焊缝中的气孔。312防止焊缝气孔的途径防止焊缝中的气孔可从两方面着手一是限制氢溶入熔融金属,或者是减少氢的来源,或者减少氢与熔融金属作用的时间(如减少熔池熙吸氢时间);二是尽量促使氢自熔池逸出,即在熔池凝固之前使氢以气泡形式及时排出,这就要改善冷却条件以增加氢的逸出时间(如增大熔池析氢时间)。(1)减少氢的来源。使用的焊接材料(包括保护气体、焊丝、焊条等)要严格限制含水量,使用前需干燥处理。一般认为,氩气中的含水量小于008时不易形成气孔。氩气的管路也要保持干燥。焊前处理十分重要。焊丝及母材表面的氧化膜应彻底清除,采用化学方法或机械方法均可,若两者并用效果更好。(2)控制焊接参数。焊接参数的影响可归结为对熔池高温存在时间的影响,也就是对氢溶入时间和氢析出时间的影响。熔池高温存在时间增长,有利于氢的逸出,但也有利于氢的溶入;繁殖,熔池高温存在时间减少,可减少氢的溶入,但也不利于氢的逸出。焊接参数不当时,如造成氢的融入量多而又不利于逸出时,气孔倾向势必增大。在MIG焊条件下,焊丝氧化膜的影响更明显,减少熔池存在时间,难以有效地防止焊丝氧化膜分解出来的氢向熔池侵入。因此希望增大熔池时间以利气泡逸出。TIG焊小热输入减少熔池存在时间减少氢的溶入同时为保证根部熔透,需用大电流,所以应大电流,大的焊接速度。如图52所示为TIG焊时焊接参数对焊缝中扩散氢H的影响。MIG焊水分主要来自氧化膜增大熔池存在时间气泡析出,所以应大电流,小的焊接速度,必要时进行预热。如图53所示为MIG焊焊接参数对焊缝气孔的影响。图32TIG焊焊接参数对焊缝中扩散氢H的影响图33MIG焊焊接参数对焊缝气孔的影响32焊接热裂纹纯铝和非热处理强化铝合金(如ALMN、ALMG合金等),一般是不容易产生裂纹的。而硬铝及大部分热处理强化铝合金,产生裂纹的倾向较大。对含有铜的硬铝(ALCUMG)和超硬铝(ALZNCUMG)合金,目前很难用熔焊方法获得没有裂纹的焊接接头,所以一般不能选用熔焊方法制造硬铝和超硬铝焊接结构。2A12铝合金属于硬铝,在焊接时,常见的热裂纹主要是焊缝凝固裂纹(图34)和近焊缝液化裂纹(图35)。并且2A12铝合金的热裂纹倾向很大,在焊接过程中最重要的就是防止热裂纹的产生。321铝合金焊接热裂纹的特点及形成原因2A12铝合金属于共晶型合金。从理论上分析,最大裂纹倾向与合金的“最大凝固温度区间”相对应。但是,由平衡状态图得出的结论与实际情况有较大的出入。在焊接过程中生成的二次相ALS及AL共晶组织和杂质,会促使铝合金具有较大的裂纹倾向。若合金存在其他元素或杂质时,还可能形成三元共晶,其熔点比二元共晶更低一些,凝固温度区间也更大一些。易熔共晶的存在,是铝合金焊缝产生凝固裂纹的重要原因之一。铝的线膨胀系数比钢约大一倍,而凝固时的收缩率又比铁大两倍,当成分中的杂质超过规定范围时,在熔池中将形成较多的低熔点共晶。两者共同作用的结果,在焊缝中就容易产生热裂纹。在铝的线膨胀系数比钢约大一倍时,并且拘束条件下焊接时易产生较大的焊接应力,也是促使铝合金具有较大裂纹倾向的原因之一。关于易熔共晶的作用,不仅要看其熔点高低,更要看它对界面能量的影响。易熔共晶成薄膜状展开于境界上时,促使晶体易于分离,而增大合金的热裂倾图34铝合金接头中的结晶裂纹图35铝合金接头热影响区中的液化裂纹向;若成球状聚集在晶粒间时,合金的热烈倾向小。近缝区“液化裂纹”同焊缝凝固裂纹一样,也与晶间易熔共晶有联系,但这种易熔共晶夹层并非晶间原已存在的,而是在不平衡的焊接加热条件下因偏析而形成的,所以称为晶间“液化裂纹”。(1)液化裂纹产生原因。如图36所示,在母材的热影响区中,成分为XC的铝合金在平衡状态下,T1温度下组织为,T2时中的组元开始向固溶体溶解,T3时全部转化为固溶体。在焊接快速加热条件下,在T2来不及溶解,达不到平衡,到T3时仍可能为两相状态,T4时已超过共晶温度,中的组元还未完全溶入固溶体,则在和两相界面出现共晶液相,这种局部液化在焊接应力下沿晶界液膜形成“液化裂纹”。(2)热裂纹的形成原因。1)拘束度的影响;2)液固相距离宽,生成柱状晶,柱状晶之间产生成分偏析,导致容易产生裂纹;3)材料因素的影响A)铝合金为共晶合金,裂纹倾向与合金结晶温度区间大小有关系;2A12铝合金热裂倾向最大时的合金组元浓度XMALCUXM2CUB线膨胀系数大,是钢的1倍,在拘束条件下焊接,容易产生较大的焊接应力,增大裂纹倾向;C铝合金焊接过程中无相变,柱状晶粗大,容易偏析。322防止焊接热裂纹的途径母材的合金系对焊接热裂纹有重要的影响。在焊接中获得无裂纹的铝合金接头并同时保证各项使用性能要求是很困难的。例如,硬铝和超硬铝就属于郑重情况。即使对于纯铝、铝镁合金等,有时也会遇到裂纹问题。对于焊缝金属的凝固裂纹,主要是通过合理确定焊缝的合金成分,并配合适当的焊接工艺来进行控制。(1)合金系的影响。在铝中加入CU、MN、SI、MG、ZN等合金元素可获得图36铝合金组织转变图不同性能的合金,但是对于裂纹倾向大的硬铝之类高强铝合金,在原合金系中进行成分调整以改善抗裂性,往往成效不大。生产中不得不采用SI5的ALSI合金焊丝(4A01)来解决抗裂纹问题。因为可以形成较多的易熔共晶,流动性好,具有很好的“愈合”作用,有很高的抗裂性能,但强度和塑性不理想,不能达到母材的水平。(2)焊丝成分的影响。不同的母材配合不同的焊丝。如果采用成分与母材相同的焊丝时,具有较大的裂纹倾向,不如改用其他合金组成的焊丝。例如采用AL5SI焊丝(国外牌号4043)和AL5MG焊丝(5A05或5556)的抗裂效果是较好。ALZNMG合金专用焊丝X5180(AL4MG2ZN015ZR)也具有相当高的抗裂性能。所以本次2A12铝合金采用AL5SI焊丝(国外牌号4043)进行MIG焊对此次工艺来说是十分合理的。(3)焊接参数的影响。焊接参数影响凝固过程的不平衡性和凝固后的组织状态,也影响凝固过程中的应力变化,因而影响裂纹的产生。热能集中的焊接方法,可防止形成方向性强的粗大柱状晶,因而可以改善抗裂性。采用小焊接电流,可减少熔池过热,也有利于改善抗裂性。焊接速度的提高,促使增大焊接接头的应力,增大热裂的倾向。因此,增大焊接速度和焊接电流,都促使增大裂纹倾向。大部分铝合金的裂纹倾向都较大,所以,即使是采用合理的焊丝,在融合比大时,裂纹倾向也必然大。因此,增大焊接电流是不利的,而且应避免断续焊接。(4)变质剂的影响。TI、ZR、V、B微量元素作为变质剂,在焊接过程中图37母材与焊丝组合的抗热裂性试验(括号中数字为母材代号,无括号的数字为焊丝代号)生成细小难熔质点,作为结晶时的非自发形核核心,细化晶粒,改善塑性,还能显著改善抗裂性能。33焊接接头的“等强性”时效强化固溶度变化大的合金,加热至高温后急冷,都可形成过饱和固溶体SS,即固溶处理。然后常温或稍高温度加热,即可产生所谓的“时效”过程而强化。时效过程时效初期,SS中发生溶质原子偏聚形成局部富集GP区,随温度或时间延长,发展为一种共格过渡相,其成分与平衡非共格相相同,但点阵不同而且未脱溶,随温度或时间延长,转化为而脱溶析出。“过时效”一般在GP区合金发生强化,微细共格相,开始出现时强度进一步提高,一旦发生,向转化,强化作用降低,转变结束时强化作用消失,成为“过时效”。热处理强化铝合金焊接接头组织如图38所示,焊接过程中,焊接温度超过过时效温度,产生过时效和脱溶,所以导致强度损失。在退火状态下焊接时,接头与母材是等强的;在冷作硬化状态下焊接时,接头强度低于母材。表明在冷作状态下焊接时接头有软化现象。是想强化铝合金,无论是退火状态下还是时效状态下焊接,焊后不经热处理,接头轻度均低于母材。特别是在时效状态下焊接的硬铝,即使焊后经人工时效处理,接头强度系数(即接头强度与母材强度之比的百分数)也未超过60。(1)非时效强化铝合金HAZ的软化主要发生在焊前经冷作硬化的合金上。经冷作硬化的铝合金,热影响区峰值温度超过再结晶温度(200300)的区域时就产生明显的软化现象。洁柔的软化主要取决于加热的峰值温度,而冷却速度的影响不很明显。由于软化后的硬度实际已低到退火状态的硬度水平,因此,焊前冷作硬化程度越高,焊后软化的程度越大。板件越薄,这种影响也显著。冷作硬化薄板铝合金的强化效果,焊后可能全部丧失。(2)时效强化铝合金HAZ的软化主要是焊接热影响区“过时效”软化,这是熔焊条件下很难避免的。软化程度决定于合金第二相的性质,也是焊接热循环有一定关系。第二相易于脱溶析出并易于聚集长大时,就越容易发生“过图38热处理强化铝合金焊接接头组织示意图时效”软化。ALCUMG硬铝的时效过程是很快的,而ALZNMG合金的时效过程是很慢的,说明前者比后者的第二相易于脱溶,所以在焊后强度损失大。另外ALCUMG在焊后560天自然时效对强度改善不明显,而ALZNMG则在焊后4天自然时效,软化开始显著消失,30天后基本消失。此次焊接为退火状态下得2A12硬铝铝合金,热影响区的强度变化如图39所示,由于时效过程很快等原因,使焊接接头的强度和母材的强度相差很大,基本上最高也只能达到母材强度的5060。34焊接接头的耐蚀性铝合金焊接接头的耐蚀性一般低于母材,热处理强化铝合金(如硬铝)接头的耐蚀性降低尤其明显。接头组织越不均匀,越易降低耐蚀性。焊缝金属的纯度和致密性也是影响接头耐蚀性的因素。杂质较多、晶粒粗大以及脆性相(如FEAL3)析出等,耐蚀性会明显下降,不仅产生局部表面腐蚀,而且会出现晶间腐蚀。焊接应力更是影响铝合金耐蚀性的敏感因素。对于铝合金焊接接头的耐蚀性下降的主要原因有(1)接头的组织不均匀由于焊接热过程的影响,使得焊缝和热影响区组织不均匀,并且还存在着偏析,会使接头各部位产生电极电位差,在腐蚀介质中形成微电池,产生电化学腐蚀,从而破坏了氧化膜的完整性和致密性,使腐蚀过程加速。(2)焊接接头存在有焊接缺陷在焊接接头中总是或多或少地存在有焊接缺陷,如咬边、气孔、夹杂物、未焊透等。这些缺陷破坏了接头表面氧化膜的连续性。(3)焊缝金属铸造组织的影响焊缝组织较母材粗大疏松,表面也不如母材光滑,表面氧化膜的连续性和致密性差。另外,焊缝为铸造组织,具有明显的枝状晶特点。由于存在着枝晶偏析,具有很大的组织和成分不均匀性,以及焊缝金属枝状晶的结晶方向,对其耐蚀性均有一定的影响。(4)焊接应力的影响焊接应力的存在,容易产生应力腐蚀。对于铝合金焊接接头,主要在下列几方面采取措施来改善接头的耐蚀性。(1)改善接头组织成分的不均匀性主要是通过焊接材料使焊缝合金化,图39ALCUMG(2A12)合金焊接热影响区的强度变化细化晶粒并防止缺陷;同时通过限制焊接热输入以减少热影响区,并防止过热。(2)消除焊接应力表面拉应力可采用局部锤击办法来消除;焊后热处理有良好效果。(3)调节工艺条件改善焊缝柱状晶成长方向。(4)采取保护措施例如,采取阳极氧化处理或涂层等。35其他焊接缺陷1易氧化铝和氧的亲和力很大,生成的氧化铝薄膜会阻碍金属之间的良好组合,焊接时易造成熔合不良与夹渣,焊接过程中合金元素易被氧化和蒸发。2易烧穿铝合金由固态转变为液态时,没有显著的颜色变化,所以不易判断母材温度。另外温度升高时,铝合金的强度降低,因此焊接时常因温度过高无法察觉而导致烧穿。3易塌陷铝及铝合金的熔点低,高温强度低,而且熔化时没有显著的颜色变化,因此焊接时常因温度过高无法察觉而导致塌陷。为了防止塌陷,可在焊件坡口下面放置垫板,并控制好焊接工艺参数。综上分析,2A12铝合金的焊接性较差,焊接时需要采取一定的工艺措施,才能获得优质的焊接接头。第四章2A12铝合金平板对接焊接工艺由于2A12铝合金的焊接性比较差,因此各个细节部分都应当有所注意。41焊前准备和预热焊前清理是保证铝及铝合金焊接质量的一个重要的工艺措施。总所周知,由于铝及铝合金极易氧化,表面生成一层致密而坚硬的氧化物薄膜,该薄膜很容易吸收水分,它不仅妨碍焊缝的良好熔合,而且是生成气孔和夹渣的根源之一。此外,如工件表面被油污、锈、垢污染后,也会引起气孔等缺陷。为了保证铝及铝合金的焊接质量,焊前要采取严格的清理措施,彻底清除焊丝和焊接接头上的氧化膜和油污。清理的程度直接关系到焊接接头的焊接质量。清理主要有脱脂去油清理、化学清理和机械清理三种。411化学清理(1)将焊件与焊丝用浓度为810、溶液温度为4060的NAOH溶液浸蚀1015分钟;(2)用水冷冲洗约2分钟;(3)在体积分数30的稀硝酸溶液中进行中和处理,焊件表面不允许有黄斑、黑斑;(4)用5060热水冲洗23分钟,并用硬毛刷刷干净;(5)放在100150干燥箱中烘干约30分钟。412机械清理先用汽油、酒精、丙酮等有机溶剂擦拭表面以除油,然后用不锈钢丝刷或刮刀把坡口及两侧50MM范围内的氧化膜刷除或刮除干净,露出金属光泽。不可采用砂纸或砂轮打磨,因为铝及铝合金材质较软,在打磨中砂粒可能被压入母材内,在焊接时会产生焊接缺陷。413焊前预热为了减少吸附水分所产生的焊缝气孔缺陷,化学处理后最好将焊丝放置在温度为200480的惰性气体中预热3080分钟,焊丝在氩气中加热,可使吸附的水分含量减少到不足五分之一。母材(2A12铝合金)预热温度为100150,可以减小冷却速度,保证焊接接头的氢有足够的时间往外扩散和强度不至于降得很低。414垫板铝和铝合金在高温时的强度很低,这样在焊接时容易使焊缝塌陷或烧穿。为了保证焊透而又不致使焊缝塌陷,在实际焊接中常常采用某些形式的垫板来拖住金属。垫板可用石墨、不锈钢或铜制造。垫块加工时,应在表面正对焊缝开一个圆弧型槽,以保证焊缝背面成形良好。垫块应该设计成能提供对底部焊缝的激冷作用,这样就减小了热影响区,对提高焊接接头的性能很有好处。此次2A12铝合金采用如图所示垫板。42焊接方法各种熔焊方法以氩弧焊的应用最为广泛。焊接薄板多应用TIG焊法,MIG焊法主要应用于板厚在3MM以上的焊接上。铝合金氩弧焊时,氩气的纯度要控制在999以上,其中限制杂质氧在0005以下,氢0005以下,水分002MG/L以下,氮0015以下。氧、氮增多,均恶化阴极清理作用。氧超过03则使钨极烧损加剧,超过01氧则使焊缝表面无光泽或发黑。氮超过005。熔池的流动性变坏,焊缝表面成型不良。钨极一般采用含钍钨极,焊接电流应有所限制。过大的电流会使钨极烧损,并可造成焊缝夹钨。为了防止钨极烧,在直流反接(DCRP)焊时,电流要限制的很小,而采用直流正接时有无阴极清理作用。所以,TIG焊接时一般都采用交流电源。但由于大厚度铝合金焊接的需要,也在研究应用直流正接的TIG焊接方法。主要是利用其熔深大的特点,同时焊缝截面成形好且气孔倾向相对较小,因此可降低对阴极清理的要求。MIG焊接时,一般采用DCRP,但所选用的焊接电流一般希望超过“临界电流”值,以便获得稳定的喷射过度的电弧过程。MIG焊接时,为了获得喷射过渡,由于临界电流的限制,焊接板厚小于3MM时就必须采用很细的焊丝,这在送丝上造成很大的困难。因此,板厚在3MM以下的构建一般不采用MIG焊焊接方法。此时熔化极脉冲氩弧焊在薄板焊接上则有其优越性。在TIG对接焊接时,在一定的钨极直径下电流增大,焊接速度也相应提高,在变动焊接速度时,气体流量也要与之相匹配,送丝速度也要相应的调整(填充汉斯送进速度可在01620M/MIN之间变动)。功率一定时,焊接速度海域焊件厚度有关,手工焊时可在0065025M/MIN间变动,自动焊时可在025050M/MIN之间变动。MIG焊接时,焊接速度可以在很大的范围内变化,一般为015150M/MIN。而焊丝送进速度可以在更大的范围内变动,一般为11100M/MIN。焊接电流必须适当,关键是确定临界电流,铝合金焊丝(直径DS)一般使用电流(I)及相应的送丝速度(VS),大体如表3所示,临界电流(IC)与合金种类及焊丝直径(DS)有关。表3铝合金焊丝的使用电流和送丝速度DSMMDSMMIAVSM/MIN08401704520121002004212161502903510242203502555在一定电流下送丝速度应等于熔化速度,若焊丝送进速度过大,焊丝未熔化就送入熔池可发生“粘丝”现象。反之,送丝速度过小,电弧将拉长,可能导致喷嘴的“回烧”现象。在送丝速度一定时,当电弧电压降低(电弧缩短)时,为了维持给定的送丝速度,焊接电流急剧减少;而在焊接电流一定的条件下。为适应电弧缩短,在给定的送丝速度下,焊丝的熔化速度必然显著增大。当电弧缩短到好像潜入熔池时,就成为所谓“下潜电弧”大电流焊接法。层间温度的控制有重要作用,层间温度的增高,不仅接头强度下降,甚至降低塑性,还可促使产生微裂纹的倾向增大。由于此次工艺的2A12铝合金厚度为8MM,因此采用MIG焊。采用直流反接电源,焊接时有良好的阴极雾化作用。而且MIG焊进行铝及铝合金焊接,焊缝金属熔敷效率很高,通常大于95,焊丝沿着焊缝移动时。基本没有飞溅和氧化现象。而且焊出的焊缝质量优良,焊件变形小。MIG焊选用大的焊接电流,慢的焊接速度,以提高熔池存在时间。43坡口设计由于2A12铝合金具有热容量大、线膨胀系数大等特点,拟定出一个合理的坡口。焊接坡口设计如图所示44焊接材料焊材2A12铝合金。厚度为8MM,供货状态为退火状态的平板。焊丝4043。焊丝成分如表4所示,因为可以形成较多的易熔共晶,流动性好,具有很好的“愈合”作用,有很高的抗裂性能,但强度和塑性不理想,不能达到母材的水平。表44043焊丝成分保护气体纯AR。AR气作为保护气体,可以避免焊接缺陷,焊接成型和焊接变形控制都比较理想。其中限制杂质氧在0005以下,氢0005以下,水分002MG/L以下,氮0015以下。氧、氮增多,均恶化阴极清理作用。超过01氧则使焊缝表面无光泽或发黑。氮超过005。熔池的流动性变坏,焊缝表面成型不良。45焊接参数焊接参数的选择如表5所示表5MIG焊焊接参数焊接方法焊材牌号焊材规格MM焊接电流A焊接电压V焊接速度MM/MIN气体流量L/MIN焊道数MIG404320220240212320258102焊丝直径根据板厚选择合适的焊丝大小。焊接电流根据焊丝直径选择。化学成分质量分数其他牌号SIFECUMNMGCRZNV、ZRTI每种合计AL4043HS311456008030005005010020005015余量焊接电压根据焊丝直径和焊接电流选择。焊接速度根据焊接电流选择。气体流量根据既能保护熔池,又能节约的最合适流量选择。46焊接变形及控制由于2A12铝合金比许多其他的焊接材料有较大的热膨胀系数,所以在焊接过程中,随着快速加热和快速冷却而带来的膨胀和收缩发生时,必然出现不同形式的变形。2A12铝合金在焊后热处理时期也会发生变形。当在金属局部区域加热的时候,未加热区域抑制了加热区域的膨胀而产生了形变。冷却时,由于周围金属的抑制,可能导致变形或翘曲。由于2A12铝合金散热迅速,焊接金属的收缩一般是焊接变形的主要原因。熔融铝的收缩,约为容积钢收缩的3倍之多。焊接变形造成焊接结构尺寸形状超差,焊接结构组装配合困难,焊接变形过大或矫正无效,有可能是产品报废,造成经济损失。为了使变形减至最小,零件设计时,应该将焊缝减至最少并且合理布置焊缝位置。如果是在刚性的区域局部焊接,如在边棱或拐角处焊接,将会是变形很小。焊缝应该远离强烈的冷作硬化区。对于一个焊道,一旦开始焊接后,就不要间断,一直焊完。采用工装夹具对焊件进行刚性固定之后在实施焊接,这也是防止变形的有效措施,且不必过分考虑焊接顺序。在实际焊接生产中,控制变形的方法还有很多,而且在运用时,往往都是联合采用,而非单独采用。由于此次工艺为2A12铝合金的平板对接工艺,直接采用两块压板将对接铝合金固定住即可。4焊后处理焊后处理是2A12铝合金必须要进行的过程,为保证焊缝质量而对残渣的清理、焊件的表面处理等等。471清理残渣焊件焊完后,在对焊缝进行外观检查和无损检测之前,需要对焊缝及两侧的残存焊渣即使进行清除,以防止焊渣腐蚀焊缝级表面,避免造成不良的后果。常用的焊后清理方法如下(1)在6080的热水中刷洗;(2)放入重铬酸钾(K2CR2O7)或质量分数为23的铬酐(CR2O3)溶液中冲洗;(3)再在6080的热水中洗涤;(4)放入干燥箱中烘干或风干。472焊件的表面处理阳极化处理,可以改善抗腐蚀和抗磨性能。使用快速焊接工艺,如采用MIG焊时,可最大限度地减少焊接热影响区。阳极化处理质量好。由于2A12焊接时为退火状态,阳极化处理后,金属基体和焊接热影响区之间的颜色反差最小。所以金属颜色的外观是非常均匀的。由于焊前进行了酸洗,所以焊后的钝化处理是什么有必要的,采用氧化膜的封闭处理方法,具体操作方法如下氧化膜的封闭实际上就是封闭氧化膜的微孔,孔处理。铝及铝合金阳极氧化膜的封闭方法很多,如下降低其表面活性,主要可分为以下几种方法,分述如下1水合封闭法水合封闭的基本原理是氧化膜和孔壁的A1203在较高温度的热水或水蒸气中发生水合反应,生成水合氧化铝A1203H20,使氧化膜体积膨胀,其体积将增大约33以上。由于膜的体积膨胀而使孔径变小,从而封闭膜孔。其反应式AL2O3十H2O2ALOOHAL2O3H2O水合封闭法又分高压蒸汽封闭法和沸水封闭法两种。高压蒸汽封闭的效果比沸水封闭好,主要反映为封闭速度快,不受PH值影响,封闭后的氧化膜耐蚀性好,而且封闭质量稳定,特别是在封闭染色氧化膜时不会出现流色现象,因此尤其适合于染色氧化膜的封闭处理。高压蒸汽封闭的主要缺点是所需高压蒸汽设备投资较大,生产成本较高,大型工件封闭处理时不能连续生产,厚氧化膜封闭时易破裂,因此只在特殊情况下使用。而沸水封闭则恰好相反,因其生产成本相对较低,操作方便,是一种普遍采用的封闭方法。1封闭工艺规范高压蒸汽封闭法工艺规范如下所示。蒸汽压力13X105PA蒸汽温度100110时间2030MIN操作注意事项蒸汽温度不可过高,否则易使氧化膜的硬度和耐磨性降低。沸水封闭法工艺规范如下所示。封闭用水去离子水或蒸馏水PH值5565温度9598时间每1UM厚的氧化膜约需23MIN通常封闭的时间需要2030MIN操作注意事项封闭用水应采用去离子水或蒸馏水,不用自来水,因为普通自来水易生水垢吸附于孔中,使膜的透明度下降。普通自来水中的C1、SO24、CU2等均对封闭膜孔有不利影响。2影响沸水封闭质量的因素水质。水中的杂质离子或不纯物会严重降低封闭后氧化膜的耐蚀性,对其外观也有一定程度的危害,因此一定要严格控制用水的质量,保证其电阻率5X105CM。在生产过程中应尽量避免前道工序残留在制品表面的酸或清洗水将有害离子带入封闭槽,为此最好在进入沸水封闭槽前先经过一道去离子水洗,以减少封闭槽的污染。为了保证封闭质量,应定期测定封闭水中的有害离子含量。温度。水温越高封闭速度越快,但长时间沸腾会加大水的消耗,因此温度最好控制在9598。当温度低于90时封闭速度将显著减缓,特别是低于80时,水合反应产物将不是一水合氧化铝A12O3H2O,而是三水合氧化铝A12O33H2O,后者很不稳定P致使氧化膜的耐蚀性能很差。时间。封闭所需时间与膜厚有关,通常每1UM约需23MIN,对于一般的阳极氧化膜总的封闭时间大约为2030MIN。当水质条件好时可取下限。PH值。PH值越高封闭速度越快,但过高的PH值会引起膜层粉化,使表面出现粉霜。PH值一般控制在5565之间,最佳为58。可用醋酸或氨水调节PH值。可在沸水封闭液中加入一些添加剂作为封闭助剂,如镍、钻等金属盐和重铬酸钾、水玻璃及三乙醇胺等,添加封闭助剂不仅可以提高封闭质量,而且还有抑制粉霜的作用。在使用封闭助剂时应特别小心,如果封闭助剂选择不当,或加入过量都会对封闭质量产生极不利影响。2重铬酸盐封闭法重铬酸盐封闭的基本原理是,在重铬酸盐水溶液中,氧化膜吸附了重铬酸盐后发生化学反应,生成碱性铬酸铝ALOHCRO4和重铬酸铝ALOHCR2O7,这些生成物填充进膜空隙,从而起到封孔作用。重铬酸盐封闭法一般用于防护性阳极氧化膜,氧化膜经封闭后呈现黄色,其耐蚀性较高。但该法不适用于装饰性或染色的氧化膜。重铬酸盐封闭溶液的配方及工艺规范如下重铬酸钾K2CR207含量15L00G/L用蒸馏水或去离子水配制PH值675用碳酸钠或氢氧化钠调节温度9098时间530MIN操作注意事项封闭液中重铬酸钾的含量越高,封闭后的氧化膜耐蚀性越好。经阳极氧化的铝制品工件,在封闭处理前必须仔细漂洗,以免将残留在工件表面的酸性液带入封闭槽,否则会对氧化膜的封闭质量和外观造成不利影响。另外,还应防止工件与槽体接触,否则会损坏氧化膜。对封闭液中杂质应进行限制,当封闭液中SO24超过02G/L时,会使氧化膜的颜色变浅或发白,可加入适量的铬酸钙CACRO4沉淀过滤排除;当SO24为002G/L时,会使氧化膜的颜色发白,耐蚀性下降,可添加硫酸铝钾K2AL2SO4424H2O0105G/L进行调整。当CL15G/L时,会对工件氧化膜产生腐蚀,封闭液需稀释或更换。3水解金属盐封闭法水解金属盐封闭的原理是,除了封闭过程中AL203的水合反应外,主要是利用金属盐被氧化膜吸附后发生水解反应,生成氢氧化物沉淀析出,充填在膜子L内,从而达到封闭氧化膜的目的。水解金属盐封闭不影响氧化膜的色泽,而且由于金属离子与有机染料分子之间会形成金属络合物,从而增加了染料的稳定性和耐晒度。因此,水解金属盐封闭法特别适用于染色或着色的防护、装饰性氧化膜。4双重封闭法所谓双重封闭是指先用金属盐溶液预封,然后再用热水或重铬酸钾溶液封闭。这种封闭方式可大大提高氧化膜的耐蚀性能。它不仅适用于透明的阳极氧化膜,而且也适用于染色或着色的氧化膜。5低温封闭法低温封闭法又称为常温封闭或冷封闭,是近年来铝型材行业使用最普遍的封闭方法。低温封闭大多采用NIF溶液体系,其反应机理很复杂,但与水解金属盐封闭法也有某些类似之处,存在AL2O3;的水合反应和NIOH2沉淀析出的双重作用,只是由于F的存在使封闭反应过程可在低温下实现。操作注意事项低温封闭溶液除上述基本组成外,还常加入少量的表面活性剂、PH缓蚀剂、铝离子络合剂以及粉霜抑制剂等助剂来进一步提高封闭质量。为了消除由于镍的沉积而带来的氧化膜偏绿,通常还加入约01G/L的CO2加以改善。低温封闭溶液在长期使用过程中NI2和F的消耗速度不一致,因此在生产过程中除定期检测NI2含量外,还应定期检测游离F的含量,始终控制其含量在工艺规定的范围内。低温封闭溶液对SO24和NH4比较敏感,当SO245G/L,NH44G/L时会影响封闭质量,此时应稀释溶液以消除其影响,或全部更换槽液。溶液的PH值可用醋酸或氨水或氢氧化钠稀溶液调节。封闭后用5060的热水漂洗或经漂洗后用热
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论