



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_Correspondingauthor:AlbanAgazzi,UniversitdeNantes-LaboratoiredethermocintiquedeNantes,LaChantrerie,rueChristianPauc,BP50609,44306Nantescedex3-France,phone:+33240683171,fax:+33240683141email:alban.agazziuniv-nantes.frAMETHODOLOGYFORTHEDESIGNOFEFFECTIVECOOLINGSYSTEMININJECTIONMOULDINGA.Agazzi1*,V.Sobotka1,R.LeGoff2,D.Garcia2,Y.Jarny11UniversitdeNantes,NantesAtlantiqueUniversits,LaboratoiredeThermocintiquedeNantes,UMRCNRS6607,rueChristianPauc,BP50609,F-44306NANTEScedex3,France2PleEuropendePlasturgie,2ruePierreetMarieCurie,F-01100BELLIGNAT,FranceABSTRACT:Inthermoplasticinjectionmoulding,partqualityandcycletimedependstronglyonthecoolingstage.Numerousstrategieshavebeeninvestigatedinordertodeterminethecoolingconditionswhichminimizeundesireddefectssuchaswarpageanddifferentialshrinkage.Inthispaperweproposeamethodologyfortheoptimaldesignofthecoolingsystem.Basedongeometricalanalysis,thecoolinglineisdefinedbyusingconformalcoolingconcept.Itdefinesthelocationsofthecoolingchannels.Weonlyfocusonthedistributionandintensityofthefluidtemperaturealongthecoolinglinewhichisherefixed.Weformulatethedeterminationofthistemperaturedistribution,astheminimizationofanobjectivefunctioncomposedoftwoterms.Itisshownhowthistwoantagonisttermshavetobeweightedtomakethebestcompromise.Theexpectedresultisanimprovementofthepartqualityintermsofshrinkageandwarpage.KEYWORDS:Inverseproblem,heattransfer,injectionmoulding,coolingdesign1INTRODUCTIONInthefieldofplasticindustry,thermoplasticinjectionmouldingiswidelyused.Theprocessiscomposedoffouressentialstages:mouldcavityfilling,meltpacking,solidificationofthepartandejection.Aroundseventypercentofthetotaltimeoftheprocessisdedicatedtothecoolingofthepart.Moreoverthisphaseimpactsdirectlyonthequalityofthepart12.Asaconsequence,thepartmustbecooledasuniformlyaspossiblesothatundesireddefectssuchassinkmarks,warpage,shrinkage,thermalresidualstressesareminimized.Themostinfluentparameterstoachievetheseobjectivesarethecoolingtime,thenumber,thelocationandthesizeofthechannels,thetemperatureofthecoolantfluidandtheheattransfercoefficientbetweenthefluidandtheinnersurfaceofthechannels.Thecoolingsystemdesignwasprimarilybasedontheexperienceofthedesignerbutthedevelopmentofnewrapidprototypingprocessmakespossibletomanufactureverycomplexchannelshapeswhatmakesthisempiricalformermethodinadequate.Sothedesignofthecoolingsystemmustbeformulatedasanoptimizationproblem.1.1HEATTRANSFERANALYSISThestudyofheattransferconductionininjectiontoolsisanonlinearproblemduetothedependenceofparameterstothetemperature.Howeverthermophysicalparametersofthemouldsuchasthermalconductivityandheatcapacityremainconstantintheconsideredtemperaturerange.Inadditiontheeffectofpolymercrystallisationisoftenneglectedandthermalcontactresistancebetweenthemouldandthepartisconsideredmoreoftenasconstant.TheevolutionofthetemperaturefieldisobtainedbysolvingtheFouriersequationwithperiodicboundaryconditions.Thisevolutioncanbesplitintwoparts:acyclicpartandanaveragetransitorypart.Thecyclicpartisoftenignoredbecausethedepthofthermalpenetrationdoesnotaffectsignificantlythetemperaturefield3.Manyauthorsusedanaveragecyclicanalysiswhichsimplifiesthecalculus,butthefluctuationsaroundtheaveragecanbecomprisedbetween15%and40%3.Thecloserofthepartthechannelsare,thehigherthefluctuationsaroundtheaverageare.Henceinthatconfigurationitbecomesveryimportanttomodelthetransientheattransfereveninstationaryperiodicstate.Inthisstudy,theperiodictransientanalysisoftemperaturewillbepreferredtotheaveragecycletimeanalysis.Itshouldbenoticedthatinpracticethedesignofthecoolingsystemisthelaststepforthetooldesign.Neverthelesscoolingbeingofprimaryimportanceforthequalityofthepart,thethermaldesignshouldbeoneofthefirststagesofthedesignofthetools.DOI10.1007/s12289-010-0695-2Springer-VerlagFrance2010IntJMaterForm(2010)Vol.3Suppl1:16131.2OPTIMIZATIONTECHNIQUESINMOULDINGIntheliterature,variousoptimizationprocedureshavebeenusedbutallfocusedonthesameobjectives.Tangetal.4usedanoptimizationprocesstoobtainauniformtemperaturedistributioninthepartwhichgivesthesmallestgradientandtheminimalcoolingtime.Huang5triedtoobtainuniformtemperaturedistributioninthepartandhighproductionefficiencyi.eaminimalcoolingtime.Lin6summarizedtheobjectivesofthemoulddesignerin3facts.Coolthepartthemostuniformly,achieveadesiredmouldtemperaturesothatthenextpartcanbeinjectedandminimizethecycletime.Theoptimalcoolingsystemconfigurationisacompromisebetweenuniformityandcycletime.Indeedthelongerthedistancebetweenthemouldsurfacecavityandthecoolingchannelsis,thehighertheuniformityofthetemperaturedistributionwillbe6.Inversely,theshorterthedistanceis,thefastertheheatisremovedfromthepolymer.Howevernonuniformtemperaturesatthemouldsurfacecanleadtodefectsinthepart.Thecontrolparameterstogettheseobjectivesarethenthelocationandthesizeofthechannels,thecoolantfluidflowrateandthefluidtemperature.Twokindsofmethodologyareemployed.Thefirstoneconsistsinfindingtheoptimallocationofthechannelsinordertominimizeanobjectivefunction47.Thesecondapproachisbasedonaconformalcoolingline.Lin6definesacoolinglinerepresentingtheenvelopofthepartwherethecoolingchannelsarelocated.Optimalconditions(locationonthecoolingandsizeofthechannels)aresearchedonthiscoolingline.Xuetal.8gofurtherandcutthepartincoolingcellsandperformtheoptimizationoneachcoolingcell.1.3COMPUTATIONALALGORITHMSTocomputethesolution,numericalmethodsareneeded.Theheattransferanalysisisperformedeitherbyboundaryelements7orfiniteelementsmethod4.Themainadvantageofthefirstoneisthatthenumberofunknownstobecomputedislowerthanwithfiniteelements.Onlytheboundariesoftheproblemaremeshedhencethetimespenttocomputethesolutionisshorterthanwithfiniteelements.Howeverthismethodonlyprovidesresultsontheboundariesoftheproblem.Inthisstudyafiniteelementmethodispreferredbecausetemperatureshistoryinsidethepartisneededtoformulatetheoptimalproblem.TocomputeoptimalparameterswhichminimizetheobjectivefunctionTangetal.4usethePowellsconjugatedirectionsearchmethod.Matheyetal.7usetheSequentialQuadraticProgrammingwhichisamethodbasedongradients.Itcanbefoundnotonlydeterministicmethodsbutalsoevolutionarymethods.Huangetal.5useageneticalgorithmtoreachthesolution.Thislastkindofalgorithmisverytimeconsumingbecauseittriesalotofrangeofsolution.Inpracticetimespentformoulddesignmustbeminimizedhenceadeterministicmethod(conjugategradient)whichreachesanacceptablelocalsolutionmorerapidlyispreferred.2METHODOLOGY2.1GOALSThemethodologydescribedinthispaperisappliedtooptimizethecoolingsystemdesignofaT-shapedpart(Figure1).ThisshapeisencounteredinmanypaperssocomparisoncaneasilybedoneinparticularlywithTangetal.4.Figure1:HalfT-shapedgeometryBasedonamorphologicalanalysisofthepart,twosurfaces1and3areintroducedrespectivelyastheerosionandthedilation(coolingline)ofthepart(Figure1).Theboundaryconditionoftheheatconductionproblemalongthecoolingline3isathirdkindconditionwithinfinitetemperaturesfixedasfluidtemperatures.Theoptimizationconsistsinfindingthesefluidtemperatures.Usingacoolinglinepreventstochoosethenumberandsizeofcoolingchannelsbeforeoptimizationiscarriedout.Thisrepresentsanimportantadvantageincaseofcomplexpartswherethelocationofchannelsisnotintuitive.Thelocationoftheerosionlineinthepartcorrespondstotheminimumsolidifiedthicknessofpolymerattheendofcoolingstagesothatejectorscanremovethepartfromthemouldwithoutdamages.2.2OBJECTIVEFUNCTIONIncoolingsystemoptimization,thepartqualityshouldbeofprimarilyimportance.Becausetheminimumcoolingtimeoftheprocessisimposedbythethicknessandthematerialpropertiesofthepart,itisimportanttoreachtheoptimalqualityinthegiventime.Thefluidtemperatureimpactsdirectlythetemperatureofthemouldandthepart,andforturbulentfluidflowtheonlycontrolparameteristhecoolingfluidtemperature.Inthefollowing,theparametertobeoptimizedisthefluidtemperatureandthedeterminationoftheoptimaldistributionaroundthepartisformulatedastheminimizationofanobjectivefunctionScomposedoftwotermscomputedattheendofthecoolingperiod(Equation(1).ThegoalofthefirsttermS1istoreachatemperaturelevelalongtheerosionofthepart.ThesecondtermS2usedinmanyworks47aimstohomogenizethetemperaturedistributionatthesurfaceofthepartandthereforetoreducethecomponentsof14thermalgradientbothalongthesurface2andthroughthethicknessofthepart.ThesetwotermsareweightedbyintroducingthevariablerefT.ItmustbenotedthatwhenrefTthecriterionisreducedtothefirstterm.Onthecontrarytheweightofthesecondtermisincreasedwhen0refT.()+=222112.dTTTdTTTTTSrfejecinjejecfluid(1)ejecT:Ejectiontemperature,injT:Injectiontemperature,refT:Referencetemperature,infT:Fluidtemperature,T:Temperaturefieldcomputedwiththeperiodicconditions(),0(,0XtTXTf+=21X,andft,0isthecoolingperiod,=dTT22.1:Averagesurfacetemperatureofthepartattheejectiontimeft.3NUMERICALRESULTSNumericalresultsarecomparedwiththoseofTangetal4whoconsidertheoptimalcoolingoftheT-shapedpartbydeterminingtheoptimallocationof7coolingchannelsandtheoptimalfluidflowrateofthecoolant.Thefirststepwastoreproducetheirresults(leftpartofFigure2)obtainedwiththefollowingconditions(casew=0.75in4):KTfluid303=,fluidflowratescmQ/3643=ineachcoolingchannels,s5.23=ft.Figure2:GeometryTang(left)andcoolingline(right)Case1:Coolinglineversusfinitenumberofchannelsforaconstantfluidtemperature(fluidT).Theaveragedistance(cmd5.1=)betweenthe7channelsandthepartsurfaceinthecoolingsystemdeterminedbyTangisadoptedinoursystemforlocatingthecoolingline3.Moreover,thefluidtemperatureandtheheattransfercoefficientvaluesissuedfromTangareimposedonthedilationofthepart3.InFigure3thetemperatureprofilesalongthepartsurface2arecomparedattheejectiontimeft.Allthetemperatureprofilesalongthesurfaces3,2,1=iiareplottedcounter-clockwiseonlyonthehalfpartfromiAtoiB(Figure1)andattheejectiontime.Weobservethatthemagnitudeofthetemperatureislessuniformwiththecoolinglinethanwiththe7channels(15Kinsteadof5K).Hencetheoptimalcoolingconfigurationcomputedwithafinitenumberofchannelsisbetterthanthiswiththecoolinglineanditwillbethenconsideredasareference.Figure3:Temperatureprofilesalongthepartsurface2Case2:Coolinglinewithavariablefluidtemperature()(sTfluid)andtheweightingfactorrefT.Thefluidtemperatures)(sTfluidarecomputedbyminimizingtheobjectivefunctionofEquation1wherethesecondtermisignored.TheresultsareplottedinFigures4and5.Figure4:TemperatureprofilesalongtheerosionFigure5:TemperatureprofilesalongthepartsurfaceInFigure4thetemperatureprofileontheerosionismuchuniformandclosetotheejectiontemperaturewithourmethod(-511.79.10S=)thanwithTangsmethod(-512.32.10=S).Howeverinbothcasesapeakremainsbetween0.12mand0.14mwhichcorrespondstothetopoftherib(B1inFigure1).Thishotspotisduetothegeometryofthepartandisverydifficulttocool.NeverthelessinFigure5wenoticethattheprofileoftemperatureatthepartsurfaceislessuniformthanin15case1(20Kinsteadof15K).Inconclusion,thefirsttermisnotsufficienttoimprovethehomogeneityatthepartsurfacebutitisadequateforachievingadesiredleveloftemperatureinthepart.Case3:Coolinglinewith()(sTfluid)andtheweightingfactorsKTref10=andKTref100=.Thefluidtemperatures)(sTfluidarenowcomputedbyminimizingtheobjectivefunctionofEquation1withKTref10=andKTref100=.ResultsareplottedinFigures6and7.Figure6:TemperatureprofilesalongthepartsurfaceFigure7:TemperatureprofilesalongtheerosionTheinfluenceofthetermS2isshowninFigure6.Thistermmakesthesurfacetemperatureofthepartuniform.IndeedincaseKTref10=temperatureisquasi-constantalloverthesurface2exceptforthehotspotasexplainedpreviously.HoweverforthisvalueofrefT,thetemperatureontheerosionisnotacceptable,themeantemperaturebeingtoohigh(340Kforadesiredlevelof336K).Thenthesecondtermimprovesthehomogeneityattheinterfacebuthedgesthesolution.Makinguniformthetemperatureattheinterfacemeanwhileextractingthetotalheatfluxneededtoobtainadesiredleveloftemperatureinthepart,becomeantagonisticproblemsifthislevelistoolow.Thebestsolutionwillbeacompromisebetweenqualityandefficiency.Forexample,bysettingKTref100=theleveloftemperature(ejecT)inthepartisreachedwhereasthesolutionbecomeslessuniformthanwiththevalueofKTref10=.NonethelessthissolutionremainsmoreuniformthanthesolutiongivenbyTang.Theoptimalfluidtemperatureprofilealongthedilationofthehalfpartisplotted(Figure8).Figure8:Optimalfluidtemperatureprofile4CONCLUSIONSInthispaper,anoptimizationmethodwasdevelopedtodeterminethetemperaturedistributiononacoolinglinetoobtainauniformtemperaturefieldinthepartwhichlea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高精度压力、差压变送器项目规划申请报告
- 2025年道路运输服务项目提案报告模板
- 2025年聚合物多元醇(POP)项目规划申请报告
- 建筑能耗在线监测系统-洞察及研究
- 2024年惠州市公务员考试行测真题及答案详解参考
- 2025年注册会计师考试《会计》财务报告编制与披露经典真题解析模拟试题集
- 2025至2030年中国树脂眼镜行业市场全景调研及前景战略研判报告
- 工业互联网平台2025年网络安全态势感知技术安全态势感知技术5G通信安全报告
- 乙肝病毒感染与肝移植:现状、挑战与进展
- 东海原甲藻能量固定基因表达调控及磷胁迫下转录组学特征解析
- 直播助农创业计划书
- 核技术在环保领域的应用
- 弱电监控系统工程施工组织计划书
- 新塘2标(南交通核)FAS、BAS施工方案
- 广东省珠海市香洲区2023-2024学年七年级下学期期末历史试题(原卷版)
- (高清版)AQ 2061-2018 金属非金属地下矿山防治水安全技术规范
- 12S108-2 真空破坏器选用与安装
- 2024年武汉市中考数学真题试卷及答案解析
- 气象信息服务行业市场突围建议及需求分析报告
- TDT 1083-2023 国土调查数据库更新数据规范
- 2024年天翼云从业者认证考试题库(判断题)
评论
0/150
提交评论