全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_Correspondingauthor:AlbanAgazzi,UniversitdeNantes-LaboratoiredethermocintiquedeNantes,LaChantrerie,rueChristianPauc,BP50609,44306Nantescedex3-France,phone:+33240683171,fax:+33240683141email:alban.agazziuniv-nantes.frAMETHODOLOGYFORTHEDESIGNOFEFFECTIVECOOLINGSYSTEMININJECTIONMOULDINGA.Agazzi1*,V.Sobotka1,R.LeGoff2,D.Garcia2,Y.Jarny11UniversitdeNantes,NantesAtlantiqueUniversits,LaboratoiredeThermocintiquedeNantes,UMRCNRS6607,rueChristianPauc,BP50609,F-44306NANTEScedex3,France2PleEuropendePlasturgie,2ruePierreetMarieCurie,F-01100BELLIGNAT,FranceABSTRACT:Inthermoplasticinjectionmoulding,partqualityandcycletimedependstronglyonthecoolingstage.Numerousstrategieshavebeeninvestigatedinordertodeterminethecoolingconditionswhichminimizeundesireddefectssuchaswarpageanddifferentialshrinkage.Inthispaperweproposeamethodologyfortheoptimaldesignofthecoolingsystem.Basedongeometricalanalysis,thecoolinglineisdefinedbyusingconformalcoolingconcept.Itdefinesthelocationsofthecoolingchannels.Weonlyfocusonthedistributionandintensityofthefluidtemperaturealongthecoolinglinewhichisherefixed.Weformulatethedeterminationofthistemperaturedistribution,astheminimizationofanobjectivefunctioncomposedoftwoterms.Itisshownhowthistwoantagonisttermshavetobeweightedtomakethebestcompromise.Theexpectedresultisanimprovementofthepartqualityintermsofshrinkageandwarpage.KEYWORDS:Inverseproblem,heattransfer,injectionmoulding,coolingdesign1INTRODUCTIONInthefieldofplasticindustry,thermoplasticinjectionmouldingiswidelyused.Theprocessiscomposedoffouressentialstages:mouldcavityfilling,meltpacking,solidificationofthepartandejection.Aroundseventypercentofthetotaltimeoftheprocessisdedicatedtothecoolingofthepart.Moreoverthisphaseimpactsdirectlyonthequalityofthepart12.Asaconsequence,thepartmustbecooledasuniformlyaspossiblesothatundesireddefectssuchassinkmarks,warpage,shrinkage,thermalresidualstressesareminimized.Themostinfluentparameterstoachievetheseobjectivesarethecoolingtime,thenumber,thelocationandthesizeofthechannels,thetemperatureofthecoolantfluidandtheheattransfercoefficientbetweenthefluidandtheinnersurfaceofthechannels.Thecoolingsystemdesignwasprimarilybasedontheexperienceofthedesignerbutthedevelopmentofnewrapidprototypingprocessmakespossibletomanufactureverycomplexchannelshapeswhatmakesthisempiricalformermethodinadequate.Sothedesignofthecoolingsystemmustbeformulatedasanoptimizationproblem.1.1HEATTRANSFERANALYSISThestudyofheattransferconductionininjectiontoolsisanonlinearproblemduetothedependenceofparameterstothetemperature.Howeverthermophysicalparametersofthemouldsuchasthermalconductivityandheatcapacityremainconstantintheconsideredtemperaturerange.Inadditiontheeffectofpolymercrystallisationisoftenneglectedandthermalcontactresistancebetweenthemouldandthepartisconsideredmoreoftenasconstant.TheevolutionofthetemperaturefieldisobtainedbysolvingtheFouriersequationwithperiodicboundaryconditions.Thisevolutioncanbesplitintwoparts:acyclicpartandanaveragetransitorypart.Thecyclicpartisoftenignoredbecausethedepthofthermalpenetrationdoesnotaffectsignificantlythetemperaturefield3.Manyauthorsusedanaveragecyclicanalysiswhichsimplifiesthecalculus,butthefluctuationsaroundtheaveragecanbecomprisedbetween15%and40%3.Thecloserofthepartthechannelsare,thehigherthefluctuationsaroundtheaverageare.Henceinthatconfigurationitbecomesveryimportanttomodelthetransientheattransfereveninstationaryperiodicstate.Inthisstudy,theperiodictransientanalysisoftemperaturewillbepreferredtotheaveragecycletimeanalysis.Itshouldbenoticedthatinpracticethedesignofthecoolingsystemisthelaststepforthetooldesign.Neverthelesscoolingbeingofprimaryimportanceforthequalityofthepart,thethermaldesignshouldbeoneofthefirststagesofthedesignofthetools.DOI10.1007/s12289-010-0695-2Springer-VerlagFrance2010IntJMaterForm(2010)Vol.3Suppl1:16131.2OPTIMIZATIONTECHNIQUESINMOULDINGIntheliterature,variousoptimizationprocedureshavebeenusedbutallfocusedonthesameobjectives.Tangetal.4usedanoptimizationprocesstoobtainauniformtemperaturedistributioninthepartwhichgivesthesmallestgradientandtheminimalcoolingtime.Huang5triedtoobtainuniformtemperaturedistributioninthepartandhighproductionefficiencyi.eaminimalcoolingtime.Lin6summarizedtheobjectivesofthemoulddesignerin3facts.Coolthepartthemostuniformly,achieveadesiredmouldtemperaturesothatthenextpartcanbeinjectedandminimizethecycletime.Theoptimalcoolingsystemconfigurationisacompromisebetweenuniformityandcycletime.Indeedthelongerthedistancebetweenthemouldsurfacecavityandthecoolingchannelsis,thehighertheuniformityofthetemperaturedistributionwillbe6.Inversely,theshorterthedistanceis,thefastertheheatisremovedfromthepolymer.Howevernonuniformtemperaturesatthemouldsurfacecanleadtodefectsinthepart.Thecontrolparameterstogettheseobjectivesarethenthelocationandthesizeofthechannels,thecoolantfluidflowrateandthefluidtemperature.Twokindsofmethodologyareemployed.Thefirstoneconsistsinfindingtheoptimallocationofthechannelsinordertominimizeanobjectivefunction47.Thesecondapproachisbasedonaconformalcoolingline.Lin6definesacoolinglinerepresentingtheenvelopofthepartwherethecoolingchannelsarelocated.Optimalconditions(locationonthecoolingandsizeofthechannels)aresearchedonthiscoolingline.Xuetal.8gofurtherandcutthepartincoolingcellsandperformtheoptimizationoneachcoolingcell.1.3COMPUTATIONALALGORITHMSTocomputethesolution,numericalmethodsareneeded.Theheattransferanalysisisperformedeitherbyboundaryelements7orfiniteelementsmethod4.Themainadvantageofthefirstoneisthatthenumberofunknownstobecomputedislowerthanwithfiniteelements.Onlytheboundariesoftheproblemaremeshedhencethetimespenttocomputethesolutionisshorterthanwithfiniteelements.Howeverthismethodonlyprovidesresultsontheboundariesoftheproblem.Inthisstudyafiniteelementmethodispreferredbecausetemperatureshistoryinsidethepartisneededtoformulatetheoptimalproblem.TocomputeoptimalparameterswhichminimizetheobjectivefunctionTangetal.4usethePowellsconjugatedirectionsearchmethod.Matheyetal.7usetheSequentialQuadraticProgrammingwhichisamethodbasedongradients.Itcanbefoundnotonlydeterministicmethodsbutalsoevolutionarymethods.Huangetal.5useageneticalgorithmtoreachthesolution.Thislastkindofalgorithmisverytimeconsumingbecauseittriesalotofrangeofsolution.Inpracticetimespentformoulddesignmustbeminimizedhenceadeterministicmethod(conjugategradient)whichreachesanacceptablelocalsolutionmorerapidlyispreferred.2METHODOLOGY2.1GOALSThemethodologydescribedinthispaperisappliedtooptimizethecoolingsystemdesignofaT-shapedpart(Figure1).ThisshapeisencounteredinmanypaperssocomparisoncaneasilybedoneinparticularlywithTangetal.4.Figure1:HalfT-shapedgeometryBasedonamorphologicalanalysisofthepart,twosurfaces1and3areintroducedrespectivelyastheerosionandthedilation(coolingline)ofthepart(Figure1).Theboundaryconditionoftheheatconductionproblemalongthecoolingline3isathirdkindconditionwithinfinitetemperaturesfixedasfluidtemperatures.Theoptimizationconsistsinfindingthesefluidtemperatures.Usingacoolinglinepreventstochoosethenumberandsizeofcoolingchannelsbeforeoptimizationiscarriedout.Thisrepresentsanimportantadvantageincaseofcomplexpartswherethelocationofchannelsisnotintuitive.Thelocationoftheerosionlineinthepartcorrespondstotheminimumsolidifiedthicknessofpolymerattheendofcoolingstagesothatejectorscanremovethepartfromthemouldwithoutdamages.2.2OBJECTIVEFUNCTIONIncoolingsystemoptimization,thepartqualityshouldbeofprimarilyimportance.Becausetheminimumcoolingtimeoftheprocessisimposedbythethicknessandthematerialpropertiesofthepart,itisimportanttoreachtheoptimalqualityinthegiventime.Thefluidtemperatureimpactsdirectlythetemperatureofthemouldandthepart,andforturbulentfluidflowtheonlycontrolparameteristhecoolingfluidtemperature.Inthefollowing,theparametertobeoptimizedisthefluidtemperatureandthedeterminationoftheoptimaldistributionaroundthepartisformulatedastheminimizationofanobjectivefunctionScomposedoftwotermscomputedattheendofthecoolingperiod(Equation(1).ThegoalofthefirsttermS1istoreachatemperaturelevelalongtheerosionofthepart.ThesecondtermS2usedinmanyworks47aimstohomogenizethetemperaturedistributionatthesurfaceofthepartandthereforetoreducethecomponentsof14thermalgradientbothalongthesurface2andthroughthethicknessofthepart.ThesetwotermsareweightedbyintroducingthevariablerefT.ItmustbenotedthatwhenrefTthecriterionisreducedtothefirstterm.Onthecontrarytheweightofthesecondtermisincreasedwhen0refT.()+=222112.dTTTdTTTTTSrfejecinjejecfluid(1)ejecT:Ejectiontemperature,injT:Injectiontemperature,refT:Referencetemperature,infT:Fluidtemperature,T:Temperaturefieldcomputedwiththeperiodicconditions(),0(,0XtTXTf+=21X,andft,0isthecoolingperiod,=dTT22.1:Averagesurfacetemperatureofthepartattheejectiontimeft.3NUMERICALRESULTSNumericalresultsarecomparedwiththoseofTangetal4whoconsidertheoptimalcoolingoftheT-shapedpartbydeterminingtheoptimallocationof7coolingchannelsandtheoptimalfluidflowrateofthecoolant.Thefirststepwastoreproducetheirresults(leftpartofFigure2)obtainedwiththefollowingconditions(casew=0.75in4):KTfluid303=,fluidflowratescmQ/3643=ineachcoolingchannels,s5.23=ft.Figure2:GeometryTang(left)andcoolingline(right)Case1:Coolinglineversusfinitenumberofchannelsforaconstantfluidtemperature(fluidT).Theaveragedistance(cmd5.1=)betweenthe7channelsandthepartsurfaceinthecoolingsystemdeterminedbyTangisadoptedinoursystemforlocatingthecoolingline3.Moreover,thefluidtemperatureandtheheattransfercoefficientvaluesissuedfromTangareimposedonthedilationofthepart3.InFigure3thetemperatureprofilesalongthepartsurface2arecomparedattheejectiontimeft.Allthetemperatureprofilesalongthesurfaces3,2,1=iiareplottedcounter-clockwiseonlyonthehalfpartfromiAtoiB(Figure1)andattheejectiontime.Weobservethatthemagnitudeofthetemperatureislessuniformwiththecoolinglinethanwiththe7channels(15Kinsteadof5K).Hencetheoptimalcoolingconfigurationcomputedwithafinitenumberofchannelsisbetterthanthiswiththecoolinglineanditwillbethenconsideredasareference.Figure3:Temperatureprofilesalongthepartsurface2Case2:Coolinglinewithavariablefluidtemperature()(sTfluid)andtheweightingfactorrefT.Thefluidtemperatures)(sTfluidarecomputedbyminimizingtheobjectivefunctionofEquation1wherethesecondtermisignored.TheresultsareplottedinFigures4and5.Figure4:TemperatureprofilesalongtheerosionFigure5:TemperatureprofilesalongthepartsurfaceInFigure4thetemperatureprofileontheerosionismuchuniformandclosetotheejectiontemperaturewithourmethod(-511.79.10S=)thanwithTangsmethod(-512.32.10=S).Howeverinbothcasesapeakremainsbetween0.12mand0.14mwhichcorrespondstothetopoftherib(B1inFigure1).Thishotspotisduetothegeometryofthepartandisverydifficulttocool.NeverthelessinFigure5wenoticethattheprofileoftemperatureatthepartsurfaceislessuniformthanin15case1(20Kinsteadof15K).Inconclusion,thefirsttermisnotsufficienttoimprovethehomogeneityatthepartsurfacebutitisadequateforachievingadesiredleveloftemperatureinthepart.Case3:Coolinglinewith()(sTfluid)andtheweightingfactorsKTref10=andKTref100=.Thefluidtemperatures)(sTfluidarenowcomputedbyminimizingtheobjectivefunctionofEquation1withKTref10=andKTref100=.ResultsareplottedinFigures6and7.Figure6:TemperatureprofilesalongthepartsurfaceFigure7:TemperatureprofilesalongtheerosionTheinfluenceofthetermS2isshowninFigure6.Thistermmakesthesurfacetemperatureofthepartuniform.IndeedincaseKTref10=temperatureisquasi-constantalloverthesurface2exceptforthehotspotasexplainedpreviously.HoweverforthisvalueofrefT,thetemperatureontheerosionisnotacceptable,themeantemperaturebeingtoohigh(340Kforadesiredlevelof336K).Thenthesecondtermimprovesthehomogeneityattheinterfacebuthedgesthesolution.Makinguniformthetemperatureattheinterfacemeanwhileextractingthetotalheatfluxneededtoobtainadesiredleveloftemperatureinthepart,becomeantagonisticproblemsifthislevelistoolow.Thebestsolutionwillbeacompromisebetweenqualityandefficiency.Forexample,bysettingKTref100=theleveloftemperature(ejecT)inthepartisreachedwhereasthesolutionbecomeslessuniformthanwiththevalueofKTref10=.NonethelessthissolutionremainsmoreuniformthanthesolutiongivenbyTang.Theoptimalfluidtemperatureprofilealongthedilationofthehalfpartisplotted(Figure8).Figure8:Optimalfluidtemperatureprofile4CONCLUSIONSInthispaper,anoptimizationmethodwasdevelopedtodeterminethetemperaturedistributiononacoolinglinetoobtainauniformtemperaturefieldinthepartwhichlea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年鲁教版初中信息科技八年级上学期期末模拟试题(解析版)
- 《GBT 32633-2016 分布式关系数据库服务接口规范》专题研究报告
- 《GB-T 25006-2010感官分析 包装材料引起食品风味改变的评价方法》专题研究报告
- 《GBT 4833.2-2008多道分析器 第2部分:作为多路定标器的试验方法》专题研究报告
- 道路安全培训宣传语录课件
- 2026年冀教版初一语文上册月考真题试卷含答案
- 重阳节新闻稿15篇
- 2026年度“十八项医疗核心制度”培训考试卷含答案
- 2026年福建省厦门市辅警人员招聘考试真题及答案
- 2025SCA实践建议:胸外科手术患者术后疼痛的管理课件
- 2026年及未来5年中国锻造件行业市场深度分析及发展前景预测报告
- 2025年荆楚理工学院马克思主义基本原理概论期末考试真题汇编
- 2026年恒丰银行广州分行社会招聘备考题库带答案详解
- 纹绣风险协议书
- 【语文】湖南省长沙市雨花区桂花树小学小学一年级上册期末试卷(含答案)
- 贵港市利恒投资集团有限公司关于公开招聘工作人员备考题库附答案
- 2026年及未来5年市场数据中国大型铸锻件行业市场深度分析及投资战略数据分析研究报告
- 儿科2025年终工作总结及2026年工作计划汇报
- 冬季防静电安全注意事项
- 2025赤峰市敖汉旗就业服务中心招聘第一批公益性岗位人员112人(公共基础知识)测试题附答案解析
- 2025版煤矿安全规程题库
评论
0/150
提交评论