时间序列(r语言实现)_第1页
时间序列(r语言实现)_第2页
时间序列(r语言实现)_第3页
时间序列(r语言实现)_第4页
时间序列(r语言实现)_第5页
已阅读5页,还剩331页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TIMESERIESINTRODUCTIONSIMPLETIMESERIESMODELSARIMAVALIDATINGAMODELSPECTRALANALYSISWAVELETSDIGITALSIGNALPROCESSINGDSPMODELINGVOLATILITYGARCHMODELSGENERALIZEDAUTOREGRESSIVECONDITIONNALHETEROSCEDASTICITYMULTIVARIATETIMESERIESSTATESPACEMODELSANDKALMANFILTERINGNONLINEARTIMESERIESANDCHAOSOTHERTIMESDISCRETEVALUEDTIMESERIESMARKOVCHAINSANDBEYONDVARIANTSOFMARKOVCHAINSUNTACKLEDSUBJECTSTOSORTTHISCHAPTERCONTRASTSWITHTHETOPICSWEHAVESEENUPTONOWWEWEREINTERESTEDINTHESTUDYOFSEVERALINDEPENDANTREALIZATIONSOFASIMPLESTATISTICALPROCESSEG,AGAUSSIANRANDOMVARIABLE,ORAMIXTUREOFGAUSSIANS,ORALINEARMODELWESHALLNOWFOCUSONASINGLEREALIZATIONOFAMORECOMPLEXPROCESSHEREISTHESTRUCTUREOFTHISCHAPTERAFTERANINTRODUCTION,MOTIVATINGTHENOTIONOFATIMESERIESANDGIVINGSEVERALEXAMPLES,SIMULATEDORREAL,WESHALLPRESENTTHECLASSICALMODELSOFTIMESERIESAR,MA,ARMA,ARIMA,SARIMA,THATPROVIDERECIPESTOBUILDTIMESERIESWITHDESIREDPROPERTIESWESHALLTHENPRESENTSPECTRALMETHODS,THATFOCUSONTHEDISCOVERYOFPERIODICELEMENTSINTIMESERIESTHESIMPLICITYOFTHOSEMODELSMAKESTHEMAMENABLE,BUTTHEYCANNOTDESCRIBETHEPROPERTIESOFSOMEREALWORLDTIMESERIESNONLINEARMETHODS,BUILTUPONTHECLASSICALMODELSGARCHARECALLEDFORSTATESPACEMODELSANDTHEKALMANFILTERFOLLOWTHESAMEVEINTHEYASSUMETHATTHEDATAISBUILDFROMLINEARALGEBRA,BUTTHATWEDONOTOBSERVEEVERYTHINGTHEREARE“HIDDEN“UNOBSERVED,LATENTVARIABLESSOMEOFTHOSEMETHODSREADILYGENERALIZETOHIGHERDIMENSIONS,IE,TOTHESTUDYOFVECTORVALUEDTIMESERIES,IE,TOTHESTUDYOFSEVERALRELATEDTIMESERIESATTHESAMETIMEBUTSOMENEWPHENOMENAAPPEAREG,COINTEGRATIONFURTHERMORE,IFTHENUMBEROFTIMESERIESTOSTUDYBECOMESTOOLARGE,THEVECTORMODELSHAVETOOMANYPARAMETERSTOBEUSEFULWEENTERTHEREALMOFPANELDATAWESHALLTHENPRESENTSOMELESSMAINSTREAMIDEASINSTEADOFLINEARALGEBRA,TIMESERIESCANBEPRODUCEDBYANALYTICALREADDIFFERENTIALEQUATIONSORPROCEDURALREADCHAOS,FRACTALSMEANSWEFINALLYPRESENTGENERALIZATIONSOFTIMESERIESSTOCHASTICPROCESSES,INWHICHTIMEISCONTINUOUSIRREGULARTIMESERIES,INWHICHTIMEISDISCRETEBUTIRREGULARANDDISCRETEVALUEDTIMESERIESWITHMARKOVCHAINSANDHIDDENMARKOVMODELSINSTEADOFARANDSTATESPACEMODELSINTRODUCTIONEXAMPLESINPROBABILITYTHEORY,ATIMESERIESYOUWILLALSOHEARMENTIONOF“STOCHASTICPROCESS“INATIMESERIES,TIMEISDISCRETE,INASTOCHASTICPROCESS,ITISCONTINUOUSISASEQUENCEOFRANDOMVARIABLESINSTATISTICS,ITISAVARIABLETHATDEPENDSONTIMEFORINSTANCE,THEPRICEOFASTOCK,THATCHANGESEVERYDAYTHEAIRTEMPERATURE,MEASUREDEVERYMONTHTHEHEARTRATEOFAPATIENT,MINUTEAFTERMINUTE,ETCPLOTLAKEHURON,YLAB“,MAIN“LEVELOFLAKEHURON“SOMETIMES,ITISSONOISYTHATYOUDONOTSEEMUCH,XBOXTESTZBOXPIERCEBOXPIERCETESTXSQUARED0014,DF1,PVALUE09059BOXTESTZ,TYPE“LJUNGBOX“BOXLJUNGTESTXSQUARED00142,DF1,PVALUE09051BOXTESTYBOXPIERCETESTXSQUARED415007,DF1,PVALUE1178E10BOXTESTY,TYPELJUNGBOXLJUNGTESTXSQUARED417749,DF1,PVALUE1024E10OPDWTESTLAKEHURON1DURBINWATSONTESTDATALAKEHURON1DW03195,PVALUEDURBINWATSONLMLAKEHURON1LAGAUTOCORRELATIONDWSTATISTICPVALUE108319112031952690ALTERNATIVEHYPOTHESISRHO0OPX50,1,51,COLIFELSEX20X50,“BLACK“,“BLUE“1EXERCISEDOTHESAMEWITHANEXPONENTIALMOVINGAVERAGEEXPONENTIALMOVINGAVERAGETHEMOVINGAVERAGEHASASLIGHTPROBLEMITUSESAWINDOWWITHSHARPEDGESANOBSERVATIONISEITHERINTHEWINDOWORNOTASARESULT,WHENLARGEOBSERVATIONSENTERORLEAVETHEWINDOW,THEREISLARGEJUMPINTHEMOVINGAVERAGETHISISANOTHERMOVINGAVERAGEINSTEADOFTAKINGTHENLATESTVALUES,EQUALLYWEIGHTED,WETAKEALLTHEPRECEDINGVALUESANDGIVEAHIGHERWEIGHTTOTHELATESTVALUESEXPONENTIALMOVINGAVERAGEX50OP3GIRCALLSTRUCTTSXXVARIANCESLEVELSLOPESEASEPSILON00007718000000000001396900000000SUMMARYRFITTED,“SLOPE“MIN1STQUMEDIANMEAN3RDQUMAX000000000091010010210000942000105600011040MATPLOTSTRUCTTSXMINXFITTED,TYPEL,YLAB“,MAIN“STRUCTURALMODELDECOMPOSITIONOFATIMESERIES“YOUCANALSOTRYTOFORECASTFUTUREVALUESBUTITMIGHTNOTBETHATRELIABLELPMINPARMFROWC5,1ELSEPARMFROWC4,1IFISTSXXPMINMAINR1CALLARIMAXCO2,ORDERC1,1,1,SEASONALLISTORDERC2,1,1,PERIOD12COEFFICIENTSAR1MA1SAR1SAR2SMA10259505902001130086908369SE0139001186005580053900332SIGMA2ESTIMATEDAS008163LOGLIKELIHOOD836,AIC1792R2CALLARIMAXCO2,ORDERC1,1,2,SEASONALLISTORDERC2,1,1,PERIOD12COEFFICIENTSAR1MA1MA2SAR1SAR2SMA105935092901412001410087008398SE02325023701084005570053800328SIGMA2ESTIMATEDAS008132LOGLIKELIHOOD8285,AIC1797R3CALLARIMAXCO2,ORDERC2,0,0,SEASONALLISTORDERC1,1,0,PERIOD12COEFFICIENTSAR1AR2SAR1068010308704469SE004460044600432SIGMA2ESTIMATEDAS01120LOGLIKELIHOOD15065,AIC3093FORR4,ITWASEVENERRORINARIMACO2,ORDERC2,0,1,LISTORDERC1,1,1,PERIOD12NONSTATIONARYARPARTFROMCSSTHEAICOFA3ISAPPALLINGLYHIGHWEWANTASLOWAVALUEASPOSSIBLEWEREALLYNEEDTODIFFERENTIATETWICELETUSLOOKATTHEPVALUESROUNDPNORMABSR1COEF,SDSQRTDIAGR1VARCOEF,5AR1MA1SAR1SAR2SMA1003094000000042007005341000000ROUNDPNORMABSR1COEF,SDSQRTDIAGR1VARCOEF,5AR1MA1MA2SAR1SAR2SMA1000535000004009635039989005275000000THISSUGGESTSANSARIMA1,1,10,1,1MODELR3R3CALLARIMAXCO2,ORDERC1,1,1,SEASONALLISTORDERC0,1,1,PERIOD12COEFFICIENTSAR1MA1SMA1023990571008516SE014300123700256SIGMA2ESTIMATEDAS00822LOGLIKELIHOOD8503,AIC17807ROUNDPNORMABSR3COEF,SDSQRTDIAGR3VARCOEF,5AR1MA1SMA1004676000000000000WENOWLOOKATTHERESIDUALSR3RRCALLARIMAXCO2,ORDERC0,1,1,SEASONALLISTORDERC0,1,1,PERIODTCOEFFICIENTSMA1SMA10143601436SE0106801068SIGMA2ESTIMATEDAS07821LOGLIKELIHOOD60401,AIC121402RVARCOEFMA1SMA1MA1001140545001048563SMA1001048563001140545PNORMABSRCOEF,SDSQRTDIAGRVARCOEFMA1SMA1008940721008940721LETUSLOOKATTHERESIDUALSR5,“SQUARE,PERIOD10“PERIODOGRAMCONTINUEDHEREISAMORECOMPLICATEDEXAMPLEINWHICHWEDONOTKNOWTHEPERIODINADVANCEDATASUNSPOTSPLOTSUNSPOTSYOUCOULDFINDTHEPERIODWITHOUTTHEPERIODOGRAMASUMMARYR2ESTIMATESTDERRORTVALUEPR|T|INTERCEPT68547230045404150973SEQUENCEFOURIERTRANSFORMFUNCTIONFUNCTIONDISCRETEFOURIERTRANSFORMDFTDISCRETESIGNALSEQUENCEIFYOUWANTFORMULASIAMPROBABLYFORGETTINGSOME“NORMALIZINGCONSTANTS“FXSUMCNEXP2PIINXNINZFXINTEGRALHATFOMEGAEXP2PIIXOMEGADOMEGAX_MSUMCNEXP2PII/NNM00,SINX,SIN3XPLOTY,TYPEL,XLAB“,YLAB“WITHTHE“WD“FUNCTIONINTHE“WAVETHRESH“PACKAGELIBRARYWAVETHRESHY0,SINX,SIN10XPLOTWDY,MAIN“THISISVERYSIMILARTOTHEDECOMPOSITIONOFPERIODICFUNCTIONSINTOFOURIERSERIES,BUTWEHAVEONEMOREDIMENSIONTHEFREQUENCYSPECTRUMISREPLACEDBYAFREQUENCYLOCATIONPLOTANOTHERADVANTAGEISTHATTHEREISALMOSTNOGIBBSEFFECTVERYCONVENIENTWHENTHESIGNALSARENOTPERIODICORSTATIONNARYINTRODUCTIONFOURIERANALYSISDECOMPOSESPERIODICFUNCTIONSASSUMSOFSINEFUNCTIONS,EACHINDICATINGWHATHAPPENSATAGIVENSCALETHEPROBLEMISTHATTHISASSUMESTHESIGNALISSTATIONNARYINSTEAD,WEWOULDLIKETODECOMPOSETHESIGNALALONGTWOSCALESFIRST,THEFREQUENCY,SECOND,THELOCATIONAFIRSTIDEAWOULDBETOCUTTHESIGNALINTOSMALLCHUNKS,ASSUMETHATTHESIGNALISSTATIONNARYONEACHCHUNK,ANDPERFORMAFOURIERDECOMPOSITIONWAVELETSPROVIDEANOTHERSOLUTIONTHEIDEAOFFOURIERANALYSISWASTOSTARTWITHAFUNCTIONTHESINEFUNCTION,SCALEITSINX,SIN2X,SIN3X,ETC,REMARKTHATWEGETANORTHONORMALBASISOFSOMESPACEOFFUNCTIONS,ANDDECOMPOSETHESIGNALSWEWANTOTOSTUDYALONGTHISBASISSIMILARLY,WECANSTARTWITHAFUNCTION,CHANGEITSSCALEANDLOCALIZATIONBYAPPLYINGBOTHHOMOTHETIESANDTRANSLATIONS,CHECKIFWEGETANORTHONORMALBASISOFSOMESUFFICIENTLYLARGESPACEOFFUNCTIONTHISISNOTALWAYSTHECASEAND,IFWEARELUCKY,DECOMPOSEOURSIGNALSALONGTHISBASISMOREPRECISELY,WEARELOOKINGFORAFUNCTIONPSISOTHATPSI2JXK,J,KINZBEANORTHONORMALBASISOFL2RHEREISANEXAMPLETHEHAARWAVELETHX1IFXISIN0,51IFXISIN5,10OTHERWISETODODAUBECHIESWAVELETSTHEREISAWHOLEFAMILYOFTHEMTHEREISARECIPETOBUILDSUCHWAVELETSSTARTWITHA“SELFSIMILAR“FUNCTION,IE,SATISFYINGANEQUATIONOFTHEFORMPHIXSUMA_KPHI2XK,THENCONSIDERPSIXSUMBARA_1KPHI2XKFORSOMEVALUESOFA_K,PSIFULFILSOURNEEDSCONVERGENCE,ORTHOGONALITY,ETCTHEIRREGULARAPPEARANCEOFWAVELETSCOMESFROMTHISSELFSIMILARITYCONDITIONPHIISCALLEDTHEFATHERWAVELETANDPSITHEMOTHERWAVELETIFYOUFINDYOURWAVELETSBYOTHERMEANS,YOUCANHAVEAMOTHERWAVELETANDNOFATHERWAVELETDWTDISCRETEWAVELETTRANSFORMMRAMULTIRESOLUTIONANALYSISWEDONOTALWAYSWORKINL2R,BUTINSMALLERSPACESINPARTICULAR,GIVENAFATHERWAVELETPHI,ONECANBUILDAFILTRATIONOFL2RIE,ANINCREASINGSEQUENCEOFSUBSPACESOFL2RV2SUBSETV1SUBSETV0SUBSETV1SUBSETV2SUCHTHATFXINVNSSIF2XINVN1BYDEFININGV0ASTHESUBSPACEGENERATEDBYTHEPHIXK,KINZINTERMSOFMOTHERWAVELETS,V1ISGENERATEDBYTHEPSI2JXK,J1,0,1MOTHER1,0,IFELSEX0,SINX,SIN3XRMEDIANABSXANDLOOKIFHIGHVALUESTENDTOCLUSTERLIBRARYTSERIESRUNSTESTFACTORIRUNSTESTDATAFACTORISTANDARDNORMAL22039,PVALUE002753ALTERNATIVEHYPOTHESISTWOSIDEDINTHISRUNSTEST,WELOOKATTHENUMBEROFRUNSOFSEQUENTIALHIGHVALUES,THENUMBEROFRUNSOFSEQUENTIALLOWVALUESANDWETRANSFORMTHEMSOTHATITFOLLOWSAGAUSSIANDISTRIBUTIONHERE,WEGETANEGATIVEVALUE,WHICHMEANSTHATWEHAVEFEWERRUNSTHATEXPECTED,IE,LONGERRUNSTHANEXPECTEDASTHEPVALUEISUNDER5,WESHALLSAYTHATTHEDIFFERENCEISSTATISTICALLYSIGNIFICANTHEREISANOTHERIMPLEMENTATIONOFTHISTESTNUMBEROFRUNSRESPMEDIANABSXPLOTMYRUNSTESTIHERE,WEGETTHESAMEPVALUEMYRUNSTESTIRUNSTESTNS883PVALUE999RESAMPLINGS0024PVALUE“THEORETICAL“002752902WECANREPEATTHISEXPERIMENTWITHOTHERFINANCIALTIMESERIESOPMEDIANABSXPLOTMYRUNSTESTIPAROPTODODOTHISWITHMANYMORESERIESOTHEREXAMPLES,INFINANCESTOCHASTICDIFFERENTIALEQUATIONSHEREAREAFEWMODELSOFTIMESERIESFIRST,AFEWNOTATIONSTHESECORRESPONDTO“STOCHASTICPROCESSES“AND“STOCHASTICDIFFERENTIALEQUATIONS“,IE,THECONTINUOUSTIMEANALOGUEOFTIMESERIESBUTASFARASINTUITIONISCONCERNED,YOUCANSTAYWITHADISCRETETIMESTHEQUANTITYWEWANTTOMODEL“S“STANDSFOR“SPOTPRICE“DSTHEFIRSTDERIVATIVEOFSTHINK“DSSNSN1“TTIMEDXGAUSSIANNOISE,WITHVARIANCEDTSVOLATILITYMTRENDNACONSTANTARANDOMWALKDSSDXARANDOMWALKWITHATRENDDSMDTSDXALOGARITHMICRANDOMWALKDSMSDTSSDXAMEANREVERTINGRANDOMWALKUSEDTOMODELAVALUETHATWILLNOTWANDERTOOFARAWAYFROMZERO,EG,ANINTERESTRATEDSNMSDTSDXANOTHERMEANREVERTINGRANDOMWALKDSNMSDTSS5DXWECANSIMULATETHEMASFOLLOWSSDESIM010HNA0A1ABSUN1AUN12AQABSUNQAUNQ2B1HN1BQHNQGJRGARCHIDEMHNA0A1AUN10UN12AQAUNQ0UNQ2B1HN1BQHNQEGARCHTODOREGRESSIONWITHGARCHRESIDUALSYOUCANUSEAGARCHMODELFORTHENOISEINAREGRESSION,WHENYOUSEENTHATTHERESIDUALSHAVEAHETEROSKEDASTICITYPROBLEMTODOANEXAMPLETHATSHOWTHEEFFECTSOFHETEROSKEDASTICITYBIASWRONGCONFIDENCEINTERVALSFARFROMOPTIMALESTIMATORSTODOTODOBEWAREIHAVENOTYETUNDERSTOODWHATFOLLOWSITISPROBABLYNOTENTIRELYCORRECTXT1XTNOISELOGNOISEN0,VARVTDATAEUSTOCKMARKETSX1STOP“THECOEFFICIENTSINPSHOULDBEIN0,1“IFANYQ1STOP“THECOEFFICIENTSINQSHOULDBEIN0,1“IFSUMCP,Q1STOP“THECOEFFICIENTSINCLUDINGGAMMASHOULDSUMUPTO1“GAMMARCALLGARCHXYCOEFFICIENTSA0A1B15054E066921E028847E01SUMMARYRCALLGARCHXYMODELGARCH1,1RESIDUALSMIN1QMEDIAN3QMAX1266546047970004895065193439506COEFFICIENTSESTIMATESTDERRORTVALUEPR|T|A05054E068103E076237445E10A16921E021151E026014181E09B18847E011720E02514392ALPHAWECANDOTHESAMETHINGWITHTHEAUTOCORRELATIONFUNCTIONACFN05LONGTERMMEMORYH16N0XTHRESHOLD,1,0,BOXTHRESHOLDED_RECURRENCE_PLOTLORENZTS1100,0,MAIN“THRESHOLDEDRECURRENCEPLOT“THRESHOLDED_RECURRENCE_PLOTLORENZTS1100,5,ABS,MAIN“THRESHOLDEDRECURRENCEPLOT“THISISTHE“1DIMENSIONALRECURRENCEPLOT“INSTEADOFTAKINGTHEDISTANCEBETWEENXT1ANDXT2,ONECANCOMPUTETHEDISTANCEBETWEENTHEMDIMENSIONALVECTORSXT1,XT11,XT1M1ANDXT2,XT21,XT2M1RECURRENCEPLOTRECURRENCE_PLOT1,MFLOORMRES0IFLAGLENGTHXREPNA,LENGTHXELSECREPNA,LAG,X1LENGTHXLAGWHILEI1RES1,MFLOORM,LENGTHT1,T1,TFLOORT,ISNULLEPSILON|LENGTHEPSILON1ONEACHEDGE,WRITETHETRANSTIONPROBABILITYTODOPLOTUSINGRGRAPHVIZEXERCICESIMULATETHEPATHOFTHESPIDER,EITHERWITHACOMPUTER,ORWITHDICECOMPARETHOSEPATHSINWHATPROPORTIONOFTHEPATHSDOESTHESPIDEREATTHEFLYWHATISTHELIFEEXPECTANCYOFTHESPIDERBEFOREITGESTGLUEDTODOPERFORMTHISSIMULATIONYOUMAYNOTICETHATMARKOVCHAINSAREVERYSIMILARTOFINITEAUTOMATATHEMAINDIFFERENCEBETWEENAMARKOVCHAINANDAPROBABILISTICFINITEAUTOMATONISTHATINTHELATTER,THELABELSAREONTHETRANSITIONS,NOTONTHESTATESMARKOVCHAINEXAMPLETHEEXTINCTIONOFSMOKERSSMOKERSCHILDRENHAVE60“CHANCES“OFSMOKINGWHILENONSMOKERSCHILDRENONLYHAVE20CHANCESOFSMOKINGGIVENTHATHALFTHEPOPULATIONCURRENTLYSMOKESWHENIWROTETHIS,IWASSTILLLIVINGINFRANCE,CANWEEXPECTTHATSMOKERSWILLEVENTUALLYDISAPPEARTHISSITUATIONCANBEMODELLEDBYA2STATEMARKOVCHAIN,THESTATESBEING“SMOKER“AND“NONSMOKER“ANDTHETRANSITIONSCORRESPONDINGTOGENERATIONRENEWALTOSIMPLIFYTHINGS,WEASSUMETHATEACHINDIVIDUALHASEXACTLYONECHILDTHEPROBABILITYVECTORP_KISTHENTHEPROPORTIONOFSMOKERSANDNONSMOKERSINGENERATIONKEXERCISEWRITETHETRANSITIONMATRIXCOMPUTEP_100WHATISTHELIMITDOSMOKERSEVENTUALLYDWINDLEANDDISAPPEARREMARKTHISISVERYSIMILARTOTHEEVOLUTIONOFANANIMALPOPULATIONFACINGAPREDATOR,DESCRIBEDBYASYSTEMOFDIFFERENTIALEQUATIONSMARKOVCHAINSAREADISCRETEANALOGUEOFSOMEEVOLUTIONMODELSTODOPICTURETODOURLOTHERMARKOVCHAINEXAMPLEFROMANENGLISHTEXT,ONECANDERIVETRANSITIONPROBABILITIESFROMONEWORDTOANOTHER,EG,P“DESTRUCTION“GIVENTHATTHEPREVIOUSWORDWAS“MASS“0002,IE,PXN1“DESTRUCTION“|XN“MASS“0002OFCOURSE,THEREAREREALLYMANYOFTHEMIFYOUDISREGARDRAREWORDSANDLIMITYOURSELFTO2000WORDS,YOUWOULDHAVE4MILLIONPROBABILITIESUNLESSYOURCORPUSISREALLYHUGE,MANYOFTHEMWOULDBEZEROEXERCISEWRITEAPROGRAMTHATCOMPUTESTHOSEPROBABILITIESFROMASETOFTEXTSACORPUSWRITEANOTHERPROGRAMTHATUSESTHOSEPROBABILITIESTOPERFORMASIMULATION,IE,THATWROTESATEXTUSINGTHATMARKOVCHAINMODIFYTHOSEPROGRAMSSOTHATTHEYUSEORDER2MARKOVCHAINS,IE,PROBABILITIESPXN2|XN1,XNITHINKTHISEXAMPLEISDETAILEDINTHEBOOK“PROGRAMMINGPEARLS“HTTP/NETLIBBELLLABSCOM/CM/CS/PEARLS/REMARKIFYOUCONSIDERLETTERSORPAIRSOFLETTERS,FORGETTINGSPACESTHESEARECALLED2GRAMSINSTEADOFWORDS,YOUCANEASILYANDRELIABLYRECOGNIZETHEMANGUAGEOFATEXTUSINGTHEPROPORTIONOFLETTERS,REGARDLESSOFTHEORDER,ISLESSRELIABLESIMILARLY,YOUCANDESIGNAMARKOVCHAINTORECOGNISEAFAMILYOFAMINOACIDSEQUENCESBUILDINGAMARKOVCHAINMARKOVJMTJMTAXAABSXXAXAXBAXXBHERE,THECAPITALSARE“NONTERMINALSYMBOLS“,THELOWERCASECHARACTERSARETHEACTUALLETTERSSTARTWITHTHESTARTSYMBOLS,APPLYARULE,THATREPLACESTHESYMBOLBYASEQUENCEOFLETTERSANDSYMBOLS,ANDCONTINUETOAPPLYRULESUNTILYOUHAVENOMORENONTERMINALSYMBOLSTHELANGUAGEDESCRIBEDBYTHISGRAMMARISTHESETOFWORDSTHATCANBEOBTAINEDINTHISWAYRULESWITHTHESAMELEFTHANDSIDEAREUSUALLYREGROUPEDASFOLLOWSTHEVERTICALBARREADS“OR“SAXAAB|XXAXA|BAXXBHEREISANEXAMPLEOFACOMPLETEDERIVATIONOFAWORDRULERESULTSAXAABAXAABAXXBXBAABXAXAAXABAABXAXAAAXAABAABAXXBAXBAABAABXBABBAABAABTHUS,“ABBAABAAB“ISINTHELANGUAGEDESCRIBEDBYTHEGRAMMARABOVENCHOMSKYNOTACOMPUTERSCIENTISTBUTALINGUISTDISTINGUISHESBETWEENFOURCLASSESOFGRAMMARSAGRAMMARISREGULARITISSOMETIMESCALLEDA“REGULAREXPRESSION“ORARATIONALEXPRESSION“YOUPROBABLYHAVETHATSOMEWHEREINYOURTEXTPROCESSORIFITSRULESAREOFTHEFORMWAVORWVAWHEREVANDWARENONTERMINALSYMBOLSANDAISONEORSEVERALLETTERSAREGULARLANGUAGECANBEDESCRIBEDBYAFINITEAUTOMATONTHEMAINCOUNTEREXAMPLEISTHESETOFWELLFORMEDPARRENTHESISSTRINGSSTRINGSOFOPENINGANDCLOSINGPARENTHESES,WHEREEACHCLOSINGPARENTHESISCORRESPONDSTOAPREVIOUSLYOPENNEDONE,WHICHISNOTREGULARACONTEXTFREEGRAMMARCFGISAGRAMMARWHOSERULESAREOFTHEFORMWSWHEREWISANONTERMINALSYMBOLANDSANYSEQUENCEOFNONTERMINALSYMBOLSANDLETTERSTHEYCANBEBEDESCRIBEDBYSTACKAUTOMATAFORINSTANCE,PALINDROMESFORMACFGSASA|BSB|AA|BBONTHEOTHERHAND,THELANGUAGEOFCOPIESEG,BABAARENOTCONTEXTFREETHEREAREALSOCONTEXTSENSITIVEGRAMMARSAWBASBANDGENERALGRAMMARSAWBSSTOCHASTICGRAMMARSGRAMMARSARETYPICALLYUSEDWHENIMPLEMENTINGCOMPILERSTHEYAREUSEDTODESCRIBEPROGRAMMINGLANGUAGESAND,GIVENAPROGRAM,TOCHECKIFITISVALIDANDTODECOMPOSEITGRAMMARSCANALSOBEUSEDINAGENERATIVEWAYSSTARTWITHTHEINITIALSYMBOL,ANDAPPLYRULESATRANDOM,UNTILALLNONTERMINALSYMBOLSHAVEDISAPPEAREDTHISCANBEFORMALIZEDBYADDINGAPROBABILITYFOREACHRULEFORINSTANCE,THEGRAMMARSAXAAB|XXAXA|B|XBCANBETURNEDINTOASTOCHASTICGRAMMARSAXAABWITHPROBABILITY07SXWITHPROBABILITY03XAXAWITHPROBABILITY02XBWITHPROBABILITY05XXBWITHPROBABILITY03STOCHASTICGRAMMARSGENERALIZEHIDDENMARKOVCHAINSMARKOVCHAINSARETHESPECIALCASEOFREGULARGRAMMARSSTOCHASTICGRAMMARANDARNSECONDARYSTRUCTUREARNSECONDARYSTRUCTURECANBEDESCRIBEDBYAGRAMMARSAS|CS|US|GSNONPAIRINGSSA|SC|SU|SGNONPAIRINGSASU|USA|CSG|GSCPAIRINGSSSBIFURCATIONWETHENPROCEEDASWITHHIDDENMARKOVMODELSSTARTWITHASETOFSEQUENCESWHOSESTRUCTUREISKNOWN,COMPUTETHEPROBABILITIESINTHEMODELAFTERTHATLEARNINGPHASE,YOUCANGIVEANEWSEQUENCETOTHESTOCHASTICGRAMMARANDASKITTHEMOSTPROBABLEPATH,IE,THEMOSTPROBABLESECONDARYSTRUCTURETHELEARNINGPHASESTILLUSESANEMALGORITHMTHEALIGNMENTOFTHEGRAMMARWITHASEQUENCECANUSETHECOCKEYOUNGERKASAMIALGORITHMCYKALGORITHASWITHMARKIVCHAINS,ONECANALSOFOCUSONATHIRDPROBLEMCOMPUTETHESCOREOFANALIGNMENTBETWEENASEQUENCEANDASTOCHASTICGRAMMAR,INORDERTOCHOOSEBETWEENSEVERALGRAMMARTHECLOSESTTOTHESEQUENCESTUDIEDHTTP/WWWDCSKCLACUK/TEACHING/UNITS/CSMACMB/DOC/LECTURE18BPDFHTTP/WWWIMBJENADE/RNAHTMLHTTP/SCORLBLGOV/INDEXHTMLHTTP/WWWRNABASEORG/METAANALYSIS/OPTIMIZATIONALGORITHMSTHEFINDTHESECONDARYSTRUCTUREOFANARNSEQUENCE,ONECANSTARTWITHONEANDTRYTOMODIFYIT,STEPBYSTEP,VIA“ELEMENTARYMOVES“,WITHUSUALOPTIMIZATIONALGORITHMSSIMULATEDANNEALING,GENETICALGORITHMSHTTP/WWWSANTAFEEDU/7EWALTER/PAPERS/KINFOLDPDFARNSEQUENCEINDEXINGUSUALLY,THEBASESINANARNSEQUENCEARENOTWELLPRESERVED,WHILETHESECONDARYSTRUCTUREISTHEREFORE,WHENSEARCHINGINADATABASEOFARNSEQUENCES,WEDONOTREALLYWANTSIMILARSEQUENCES,BUTSEQUENCESWHOSESECONDARYSTRUCTUREISSIMILARHMMHIDDENMARKOVCHAINSTODOATUTORIALONHIDDENMARKOVMODELSANDSELECTEDAPPLICATIONSINSPEECHRECOGNITIONLRRABINERHTTP/WWWECEUCSBEDU/FACULTY/RABINER/ECE259/REPRINTS/TUTORIAL20ON20HMM20AND20APPLICATIONSPDFHMMEMITTINGCONTINUOUSVARIABLESTODOMARKOVDECISIONPROCESSESMDPTODOINEACHSTATE,ONECANMAKEADECISIONTHATLEADSTODIFFERENTTRANSITIONPROBABILITIES“REINFORCEMENTLEARNING“ISTHEPROBLEMOFFINDINGAPROFITABLEWRTSOMEREWARDAWARDEDTOEACHDECISIONPOLICYTOMAKETHESEDECISIONSSEEREINFORCEMENTLEARNING,ASURVEY,BYKAELBLING,LITTMANANDMOOREHTTP/WWWCSCMUEDU/AFS/CS/PROJECT/JAIR/PUB/VOLUME4/KAELBLING96APDFTOSORTMARKOVCHAINSAMARKOVCHAINOFORDER1ISATIMESERIESWITHDISCRETEVALUESSUCHTHATPXN1A|XNBDOESNOTDEPENDONNTHEMATRIXOFTHOSEPROBABILITIESISCALLEDTHETRANSITIONMATRIXHIGHERORDERMARKOVCHAINSCANBEEXPRESSEDAS“VECTORVALUED“MARKOVCHAINSOFORDER1TODOMARKOVCHAINSSIMULATION,ESTIMATINGTHETRANSITIONMATRIXLIBRARYHELPDSE1LIBRARYHELPDSE2LIBRARYHELPVLMCVARIABLELENGTHMARKOVCHAINSHIDDENMARKOVCHAINSHIDDENMARKOVMODELWEDONOTDIRECTLYOBSERVETHESTATESOFTHEMARKOVCHAIN,BUTOTHERSTATES,PROBABILISTICALLYRELATEDTOTHEMBYA“CONFUSIONMATRIX“FORWARDALGORITHMPROBABILITYOFOBSERVINGAGIVENSEQUENCEOFSTATESVITERBOALGORITHMTOGETANESTIMATIONOFTHEHIDDENSTATETRANSITIONSKNOWINGTHEOBSERVABLESTATETRANSITIONSFORWARDBACKWARDALGORITHMTOGETANESTIMATIONOFTHETRANSITIONMATRIX,THECONFUSIONMATRIX,ANDTHEINITIALPROBABILITYVECTORHTTP/WWWCOMPLEEDSACUK/ROGER/HIDDENMARKOVMODELS/HTML_DEV/MAINHTMLLIBRARYMSMM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论