已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鲁棒的分区域边界球描述子用于三维人脸识别/PAPEREDU1中国科技论文在线ROBUSTREGIONALBOUNDINGSPHEREREPRESENTATIONFOR3DFACERECOGNITIONMINGYUE,RUANQIUQIINSTITUTEOFINFORMATIONSCIENCE,BEIJINGJIAOTONGUNIVERSITY,BEIJING1000445BRIEFAUTHORINTRODUCTIONMINGYUE,1984,YUEMING明悦ISCURRENTLYPURSUINGTHEPHDDEGREEATTHEINSTITUTEOFINFORMATIONSCIENCE,BEIJINGJIAOTONGUNIVERSITYHERRESEARCHINTERESTSINCLUDEIMAGEPROCESSING,PATTERNRECOGNITION,3DFACERECOGNITIONANDRECONSTRUCTION,ETCABSTRACTAROBUSTREGIONALBOUNDINGSPHEREREPRESENTATIONRRBSRISINTRODUCEDTOFACILITATE3DFACERECOGNITIONINOURFRAMEWORK,WEFIRSTSEGMENTAGROUPOFREGIONSONEACH3DFACIALPOINTCLOUDBYCURVATUREINFORMATIONANDFACIALSHAPECHARACTERISTICSTHEN,THEEXTRACTEDREGIONSAREPROJECTEDONTHEBOUNDINGSPHERICALBANDSINORDERTOREFLECTTHEDISTINCTIVESHAPEINFORMATIONOFFACIALDIFFERENTREGIONSNEXT,ANORTHOGONALREGIONALANDGLOBALREGRESSIONORGRISUTILIZEDTOEXTRACTTHE10DISCRIMINANTFEATUREVECTORSEXPERIMENTALRESULTSBASEDONTHEDIFFERENT3DFACEDATABASESDEMONSTRATETHATBALANCINGREGIONALANDGLOBALFACIALCHARACTERISTICSALLOWFORTHEHIGHQUALIFIEDPERFORMANCECOMPAREDWITHTHEPREVIOUSPOPULARAPPROACHES,OURFRAMEWORKHASACONSISTENTLYBETTERPERFORMANCEINTERMSOFEFFECTIVENESS,ROBUSTNESS,ANDUNIVERSALITYKEYWORDSREGIONALBOUNDINGSPHEREREPRESENTATION3DFACERECOGNITIONORTHOGONALREGIONALAND15GLOBALREGRESSION0INTRODUCTIONBIOMETRICSSYSTEMSHAVEBEENPRESENTEDFORSEVERALDECADESWITHWIDEAPPLICATIONS,SUCHASINTELLIGENTMONITORING,COMPUTERAIDEDSECURITYSYSTEM,ANDMEDICALRESCUEAMONGTHEM,FACE20RECOGNITIONHASAHIGHLEVELPREFERENCEFORAHUGENUMBEROFRESEARCHERSANDORGANIZATIONS,MAINLYBECAUSEOFITSNONINVASIVENESSANDUSERFRIENDLINESSHOWEVER,FROMTHEPERSPECTIVEOFPRACTICALAPPLICATIONS,FACERECOGNITIONDEVELOPEDBY2DIMAGESHASBEENHINDEREDBYTHEOBSTACLESINDUCEDBYPOSE,LIGHTING,EXPRESSIONS,ANDOTHERVARIEDCHARACTERISTICSINUNCONTROLLEDENVIRONMENTSWITHTHELOWEREDCOSTOF3DDIGITALCAPTURINGSYSTEMS,FACIALRECOGNITIONIN3DDATA25HASBEENINTRODUCEDTOSOLVETHECHALLENGINGISSUESUSINGAVARIETYOFMETHODSASUFFICIENTBROADINVESTIGATIONOFFACERECOGNITIONHASBEENPROVIDEDIN1,SPECIFICALLYON3DFACERECOGNITIONEMPIRICALSTUDYSHOWSTHATFACIALSHAPEHASSIGNIFICANTVARIATIONSINTERMSOFDIFFERENTREGIONSONTHEFACIALSURFACEINORDERTOBETTERREFLECTFACIALANATOMICALSTRUCTUREANDDESCRIBETHEDISCRIMINANTFEATURES,WEINTRODUCESEGMENTINGSCHEMETOADDRESSTHEMAJOR30CHALLENGESEFFECTINGTHEPERFORMANCEIMPROVEMENTANDPRESENTANEWRECOGNITIONFRAMEWORKTO3DFACIALDATAOURRESEARCHCONSISTSOFTHREEIMPORTANTPROCEDURESFACIALREGIONSEGMENTATION,FEATUREREPRESENTATION,ANDFEATUREEXTRACTIONINOURFRAMEWORK,AGROUPOFFACIALLOCALREGIONSCANBECOARSELYLOCATEDBYCURVATUREINFORMATIONWHICHPOSSESSESMOREDISCRIMINANTPOWERTHEN,WEEXPLOITTHEGLOBALBOUNDING35SPHEREDESCRIPTORTOTHESUBREGIONSONTHEFACEFORDECREASINGTHEINFLUENCEOFEXPRESSIONSANDPOSESANDTHEREGIONSWITHINTHESHAPEBANDSCANBECONVERTEDINTOTHESPHERICALDOMAINSBASEDONTHEREGIONALBOUNDINGSPHERESTOOBTAINOURREGIONALBOUNDINGSPHEREREPRESENTATIONRBSRREGIONALANDGLOBALREGRESSIONWITHORTHOGONALCONSTRAINTSISINTRODUCEDTOGRASPTHEMANIFOLDSTRUCTUREOFOURFEATUREREPRESENTATIONTHELOWERDIMENSIONALDISCRIMINANTFEATUREVECTORSCANBE40EXTRACTEDTODESCRIBETHEREGIONALCHARACTERISTICSFORACHIEVINGTHE3DFACERECOGNITIONOURMETHODISMOREROBUSTTOIMAGEARTIFACTS,LIGHTINGVARIANCE,WINKLES,ANDOCCLUSIONSAND/PAPEREDU2中国科技论文在线CORRUPTIONSANDSHOWSTHEGENERALIZATIONBASEDONTHEDIFFERENTCHALLENGINGDATABASES1FACIALREGIONALSEGMENTATIONANDFEATUREREPRESENTATIONTHEORIGINAL3DFACIALIMAGESINTHEDATABASESUSUALLYCONTAINSOMENONFACIALAREAS,SUCHAS45EARS,NECKSANDSHOULDERSASSHOWNINFIGURE1BYCOMBININGTHE2DTEXTUREIMAGEANDITSCORRESPONDINGVALIDPOINTMATRIX,THEMAINFACIALAREACANBECOARSELYEXTRACTEDAXISANGLEREPRESENTATIONISUSEDTOALIGNTHEINPUTWITHTHEREFERENCEMODELFIXEDANDCORRECTLARGEPOSEVARIATIONSMOREDETAILSCANBEFOUNDIN3THEN,WITHTHEDIFFERENTVALUESANDDIRECTIONSOFCURVATURE4,THEDIFFERENTAREASOFAFACECANBECOARSELYDETECTED50FIGURE13DFACIALREGIONALSEGMENTATIONINORDERTOBETTERREFLECTTHEFACIALSURFACESHAPEANDINCREASETHEDISCRIMINATION,ANOVELDESCRIPTORISPROPOSEDFORAGROUPOFFACIALREGIONS,DENOTEDASBOUNDINGSPHEREREPRESENTATION55BSRFOREACHREGIONONA3DFACIALIMAGE,THEDESCRIPTORISIMAGEDASTHEPROJECTIONOFTHERELATIVEPOSITIONOFAFACIALPOINTCLOUDINTOBOUNDINGSPHERESCENTEREDASTHECENTROIDPOINTSOFTHEREGIONSTHERATIOBETWEENTHEDISTANCESOFPOINTSOFTHEREGIONANDITSCORRESPONDINGCENTROIDANDRADIUSOFBOUNDINGSPHEREREFERSTOTHEVALUEOFSPHERICALPOINTSTHEVALUESOFPOINTSONTHEBOUNDINGSPHERECANBEDEFINEDASFOLLOWS,60222/IIXXIIYYIIZZIBSJBSRCPCPCPCR1WHEREIPISTHECOORDINATEVALUEOFEACHALIGNED3DFACIALREGIONPOINT,BSJRDENOTESTHEMAXIMUMDIFFERENCEAMONGTHETHREEDIFFERENTDIRECTIONS,XYZONTHECARTESIANCOORDINATESASTHERADIUSOFTHEREGIONALBOUNDINGSPHERE2ROBUSTORTHOGONALREGIONALANDGLOBALREGRESSIONSFOR65DISCRIMINANTFEATUREEXTRACTIONEFFICIENTALGORITHMSFORHIGHDIMENSIONALDATAREQUIREADIMENSIONREDUCTIONPROCEDURE,ANDCOMPACTDISCRIMINANTFEATURESNEEDTOBEEXTRACTEDTODESCRIBETHEORIGINALFACIALDATAHOWEVER,THEREARESOMEREMAININGARTIFACTSLEFTFROMTHEREGIONSEGMENTATION,SUCHASSOMESTRETCHEDORMISALIGNEDIMAGES,EXPRESSIONVARIANTS,HAIROCCLUSIONS,ANDLARGEDATANOISESANDCORRUPTIONS70HERE,WEINTRODUCETHEORTHOGONALREGIONALANDGLOBALREGRESSIONFOREFFECTIVELYDISCRIMINANTFEATUREEXTRACTIONINMULTIREGIONSLEARNING,WEAREGIVENASETOFFACIALIMAGESWITHKREGIONS1,1,JMJJIIIBSRYJK,WHEREJMJIBSRDENOTESTHEBSRDESCRIPTOROF/PAPEREDU3中国科技论文在线THEITHFACIALSAMPLEFORTHEJTHREGION,JIYDENOTESTHECORRESPONDINGOUTPUT,JMISTHE75NUMBEROFPOINTSFORJTHREGION,AND1KJJMMISTHETOTALDIMENSIONOFTHEORIGINAL3DFACIALBSRDESCRIPTORLET1,JJMNUMJJJTMBSRBSRBSRDENOTETHEDATAMATRIXOFBSRDESCRIPTORSFORTHEJTHREGIONAMONGNUM3DFACIALIMAGESINOURAPPLICATIONS,THECLEANANDWELLALIGNEDDESCRIPTORSCANBETREATEDASLINEARLYCORRELATEDWITHCLASSICALREGRESSIONMODEL,1,JJTJYRBSRJK,WHEREJMDJRISTHEREGRESSIONMATRIXFORTHE80JTHREGIONTHEREGRESSIONVECTORSFORALLKREGIONSFROMTHEREGRESSIONMATRIX1,MDKRRRWHICHNEEDTOBEESTIMATEDFROMTHEDATAHOWEVER,INMANYREALWORLDSITUATIONS,THEOBSERVATIONS,INOURCASETHEEXPLANATORYVARIABLESJBSRAREPERTURBEDBYSMALL,BUTDENSELYSUPPORTED,NOISESTHECLASSICALREGRESSIONFRAMEWORKSHAVEBEENEXTENDEDTOTHEMODELBYADDINGANOISETERME,WHICHCANMINIMIZETHEINFLUENCEOFTHEDATA85NOISESTHEN,WECANEFFECTIVELYDECREASETHEINFLUENCEOFTHEDATANOISESANDPRESERVETHELINEARSTRUCTUREBETWEENTHEEXPLANATORYANDRESPONSEVARIABLESTHERELATIONSHIPOFTHEEXPLANATORYANDRESPONSEVARIABLESCANBEDENOTEDASFOLLOWS,1,JJTJJYRBSREJK2INORDERTOBETTERCOPEWITHTHEDATAANDREFLECTTHEFACIALGLOBALPROPERTIES,WEINTRODUCEA90NONPARAMETRICAPPROACH7FOROUTOFSAMPLEEXTRAPOLATIONTOOBTAINTHEGLOBALREGRESSIONMATRIXBASEDONTHEREGIONALBSRDESCRIPTORSWEMAPTHEREGIONALFACIALBSRDESCRIPTORINTOAHILBERTSPACEANDD,IEJJTJJYRBSRE,WHEREJRISTHEREGIONALREGRESSIONMATRIXFROMTODANDJDEISNOISETERMASARESULT,THEOBJECTIVEFUNCTIONFORORTHOGONALREGIONALANDLOCALREGRESSIONCANBEREWRITTENAS9522,11221MIN,STJJMKTJJIIIFFRREEYIJMTTIIFFIRBSREYRRBSREYRYYI3ACCORDINGTOTHELITERATURE7,THEDISCRIMINANTFEATUREVECTORYCANBECOMPUTEDBY111111TTTXMMYYHKHIHKYYHKHIHKMM4WHERE111TMMHIMDENOTEASTHEGLOBALCENTERINGMATRIX,MXKDENOTEASAVECTORWITHITSITHELEMENT22EXP/TXIIIKBSRBSRBSRBSR,ANDIXISTHE100ITHINDIVIDUALINTHEFACIALIMAGESETINORDERTOAVOIDOVERFITTING,WEPERFORMLOCALPCATOREDUCETHEDIMENSIONOFEACHFACIALREGIONBSRDESCRIPTORASPREPROCESSINGOURDISCRIMINANTFEATUREVECTORSYCANEFFICIENTLYIMPROVETHEDISCRIMINANTFEATUREEXTRACTION,AVOIDINGTHECORRUPTEDDATAINVOLVEDANDINFLUENCEOFMISALIGNMENTITEFFICIENTLYPRESERVESTHERELATIONSHIPOFDIFFERENTFACIALREGIONSINTHEHOMOGENEOUSSAMPLESANDENHANCESTHEDISCRIMINANTBETWEENTHE105HETEROGENEOUSSAMPLES/PAPEREDU4中国科技论文在线3EXPERIMENTSINTHEEXPERIMENTALSECTION,WETESTTHEPERFORMANCEOFOUR3DFACERECOGNITIONFRAMEWORKINBOTHIDENTIFICATIONANDVERIFICATIONSCENARIOSFROMTHEPREPROCESSEDIMAGES,WECANEXTRACTTHE110DIFFERENTDISCRIMINATIVEFEATURESTOREPRESENTTHEINDIVIDUALSANDCOMPARETHEACCURACYWITHOTHERPOPULARMETHODSBASEDONTHESAMEAPPLICATIONPURPOSETHESIMILARITYMEASUREISEUCLIDEANDISTANCE31EXPERIMENTSWITHTHEDIFFERENTDESCRIPTORSHERE,WEEVALUATETHECHALLENGINGISSUESOF3DFACERECOGNITIONDISCUSSEDONTHEFRGCV2115DATABASE8,WHICHISTHELARGESTPUBLICLYAVAILABLEDATABASE,INCLUDING4,007SCANSOF466SUBJECTSINTOTALINTHESEEXPERIMENTS,WEUSEOURPROPOSEDRRBSRFEATUREDESCRIPTORTOCHARACTERIZETHESUBJECTSANDCOMPARETHEIDENTIFICATIONPERFORMANCEWITHTHERAWDEPTHIMAGES,SPINIMAGES9ANDSFRDESCRIPTORS10,RESPECTIVELYWEDEFINEFOURDIFFERENTTYPECONFIGURATIONSFORTHEPERFORMANCEEVALUATIONASSHOWNINTABLE1FOREACHCONFIGURATION,WE120PRESERVEONLYTHEINDIVIDUALSFROMTHEDATABASETHOSEHAVEATLEAST1ISAMPLES,ANDWERANDOMLYCHOSENITRAININGSAMPLESPERCLASS,WHILEASSIGNINGTHERESTTOTHETESTSET2TABLE1TESTCONFIGURATIONSWITHTHEDIFFERENTTESTSETSCONFIGURATIONSI1234NUMBEROFSUBJECTS410384316285TRAININGSET4107689481140TESTSET3541318330032755125WESHOWTHERANK1IDENTIFICATIONACCURACYBASEDONTHEDIFFERENTDESCRIPTORSFROMTABLE2,OURRRBSRFEATUREDESCRIPTORSSIGNIFICANTLYOUTPERFORMTHEOTHERDESCRIPTORSONALLOFTESTCONFIGURATIONSTHEDEPTHIMAGEHADSLIGHTLYHIGHERACCURACYTHANTHESINGLESPINIMAGEANDTHESFRDESCRIPTORSALSOHAVEHIGHERRECOGNITIONPERFORMANCETHANTHERAWDEPTHIMAGESTHERESULTSDEMONSTRATETHEEFFECTIVENESSOFOURRRBSRDESCRIPTORONTHECHALLENGINGFACIALVARIATIONSAND130THESENSORINFORMATIONHOWEVER,FORLARGEILLUMINATIONVARIATIONS,SPINIMAGESANDSFRDESCRIPTORSMAYBECOMPLETELYCORRUPTEDANDINEVITABLETOINFLUENCETHEACCURACYEVENTHOUGHTHEREARESOMEROBUSTESTIMATIONALGORITHMS5TORECOVERTHECORRUPTEDIMAGES,THEYREQUIRESOMEPERFECTIMAGESASTHETRAININGSET,WHICHISDIFFICULTTOOBTAININTHEWIDEAPPLICATIONSESPECIALLYFORLARGEEXPRESSIONVARIATIONS,FOREXAMPLETHEMAGNITUDEOFOPENINGMOUTHANDTHELOWERCHIN135CHANGESOURRRBSRDESCRIPTORCANEFFECTIVELYCONVERTTHEORIGINALPOSITIONSONTHETHREEAXESINTOAREPRESENTATIONVECTORWHICHCANBETREATEDASTHECOMPLEMENTARYOFTHEDEPTHANDINTENSITYINFORMATIONWITHMOREDISCRIMINATIVEPROPERTIESANDROBUSTTOEXPRESSIONVARIATIONSTHISISILLUSTRATEDTHATTHEDISTINCTIMPROVEMENTONOURDESCRIPTORCOMPAREDWITHTHEOTHERCOMMONLYUSEDREPRESENTATIONS140TABLE2RANK1IDENTIFICATIONRESULTSWITHTHEDIFFERENTDESCRIPTORSCONFIGURATIONSI1234RRBSR5417612568037498DEPTHIMAGES445586458976314SPINIMAGES7427521256716319SFRDESCRIPTORS5227598566577289WEALSOSHOWTHECUMULATIVEMATCHCHARACTERISTICSCMCCURVESOFTHEMETHODSFORFRGCV2DATABASEASILLUSTRATEDINFIGURE2OURRRBSRDESCRIPTORSCANPROVIDESIGNIFICANTLY145HIGHQUALITYRESULTSTHROUGHTHEDIFFERENTRANKSTHISISMAINLYBECAUSEOURFEATURESTHATREFLECTTHE/PAPEREDU5中国科技论文在线CHANGESOFFACIALSHAPESAREINSENSITIVETOTHEVARIATIONSOFPOSESORILLUMINATIONSCONSIDERINGTHEINTRINSICCHARACTERISTICOFTHEDIFFERENTFACIALREGIONS,RRBSRAREMOREROBUSTTOFACIALVARIATIONSCOMPAREDWITHTHEOTHERDESCRIPTORSFACIALEXPRESSIONSMAINLYREFLECTTHESHAPEVARIATIONSONTHEMOUTHANDCHINMATHEMATICALLY,THEVARIATIONSCANBETREATEDASNONRIGIDTRANSFORMATIONSAND150DETERIORATETHELINEARSTRUCTUREOFTHEFACIALSURFACETHUS,OURORGRFEATUREEXTRACTIONMETHOD,SINCETHEYHAVEBALANCEDTHEINFLUENCEOFTHEFACIALRIGIDANDNONRIGIDAREASONTHEWHOLE3DFACE,CANEFFECTIVELYPRESERVETHELINEARCHARACTERISTICSANDCONQUERTHEIMPACTOFEXPRESSIONVARIATIONSFIGURE2THECMCCURVESOFFRGCV203DFACEDATABASE1554CONCLUSIONINTHISPAPER,WEPROPOSEANEW3DFACERECOGNITIONFRAMEWORKRRBSRBYCOMBININGANOVELBSRDESCRIPTORANDANOVELDISCRIMINANTFEATUREEXTRACTIONBASEDONORGRWEHAVEUTILIZEDASHAPEBANDSMETHODFORREFINEDFACIALREGIONSEGMENTATIONINTHEORIGINAL3DPOINT160CLOUDSBSRDESCRIPTORCANEFFICIENTLYREFLECTTHEREGIONALSURFACESHAPEANDENHANCEIMAGELOWLEVELFEATURES,WHICHAREEQUALTOENHANCEKEYFACIALELEMENTINFORMATIONSUCHASTHENOSE,EYES,ANDMOUTHOURORGRMODELBASEDONREGIONALANDLOCALREGRESSIONSCHEMEEFFECTIVELYBALANCESTHEREGIONALNEIGHBORSTRUCTUREOFAFACIALMANIFOLDANDTHEGLOBALCHARACTERISTICSOFFACIALSHAPEASARESULT,OURMETHODNICELYINHERITSTHEABILITYOFLOCALPRESERVATIONANDINCREASE165SEPARABILITY,WHICHOVERCOMESEXPRESSIONANDPOSESVARIATIONSTOSOMEEXTENTFINALLY,EXPERIMENTALRESULTSSHOWTHATTHEPERFORMANCEOFOURPROPOSEDRRBSRFRAMEWORKISBETTERTHANOTHERPOPULARAPPROACHESWITHAGOODGENERALIZATIONACKNOWLEDGEMENTSTHANKSTOHELPFULPEOPLEANDCOMPANIESTHISWORKISSUPPORTEDBYNATIONALNATURALSCIENCE170FOUNDATIONNO60973060SPECIALIZEDRESEARCHFUNDFORTHEDOCTORALPROGRAMOFHIGHEREDUCATIONNO200800040008REFERENCES1KWBOWYER,KCHANG,ANDPFLYNNASURVEYOFAPPROACHESANDCHALLENGESIN3DANDMULTIMODAL1753D2DFACERECOGNITIONCOMPUTERVISIONANDIMAGEUNDERSTANDING,1011115,20062RSLLONCH,EKOKIOPOULOU,ITOSIC,ANDPFROSSARD3DFACERECOGNITIONWITHSPARSESPHERICALREPRESENTATIONSPATTERNRECOGNITION,433824834,20103YUEMING,QIUQIRUANROBUSTSPARSEBOUNDINGSPHEREFOR3DFACERECOGNITIONSUBMITTEDTOIMAGEANDVISIONCOMPUTING1804ABMORE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南外贸职业学院单招职业技能测试题库带答案
- 2026年山东水利职业学院单招职业倾向性考试必刷测试卷必考题
- 2026年广西国际商务职业技术学院单招职业适应性考试必刷测试卷新版
- 2026年江西省九江市单招职业倾向性测试必刷测试卷及答案1套
- 2025广东广州市越秀区大东街经济发展办招聘辅助人员(统计员岗)1人参考题库附答案详解(a卷)
- 2026年保定职业技术学院单招职业适应性考试必刷测试卷必考题
- 2025年河北张家口蔚县第二批硕博人才引进50名参考题库及一套参考答案详解
- 2026年江苏安全技术职业学院单招综合素质考试必刷测试卷必考题
- 2026年郴州职业技术学院单招职业技能考试题库完美版
- 2026年西藏昌都地区单招职业倾向性测试必刷测试卷带答案
- 施工安全文明施工奖惩制度汇编
- 小学消防安全课件下载
- 认知障碍科普
- AEO企业高级认证介绍
- 2025年军队文职人员招聘考试试题及答案
- 2025至2030石油化工设备市场发展现状分析及行业项目调研及市场前景预测评估报告
- 高铁站隔离开关操作员考试试卷与答案
- 2025年导游资格证考试专项训练 导游业务与政策法规押题试卷
- 中国软件行业协会:2025中国软件行业基准数据报告 SSM-BK-202509
- 国家电投集团五凌电力有限公司笔试
- 2025至2030智利电力行业项目调研及市场前景预测评估报告
评论
0/150
提交评论