人脸识别最新英文论文_第1页
人脸识别最新英文论文_第2页
人脸识别最新英文论文_第3页
人脸识别最新英文论文_第4页
人脸识别最新英文论文_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1QUOTIENTBASEDMULTIRESOLUTIONIMAGEFUSIONOFTHERMALANDVISUALIMAGESUSINGDAUBECHIESWAVELETTRANSFORMFORHUMANFACERECOGNITIONMRINALKANTIBHOWMIK1,DEBOTOSHBHATTACHARJEE2,MITANASIPURI2,DIPAKKUMARBASU2ANDMAHANTAPASKUNDU21DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,TRIPURAUNIVERSITYACENTRALUNIVERSITYSURYAMANINAGAR,TRIPURA799130,INDIAMKB_CSEYAHOOCOIN2DEPARTMENTOFCOMPUTERSCIENCEANDENGINEERING,JADAVPURUNIVERSITYKOLKATA,WESTBENGAL700032,INDIAAICTEEMERITUSFELLOWDEBOTOSHINDIATIMESCOM,MITANASIPURIGMAILCOM,DIPAKKBASUGMAILCOM,MKUNDUCSEJDVUACINABSTRACTTHISPAPERINVESTIGATESTHEMULTIRESOLUTIONLEVEL1ANDLEVEL2QUOTIENTBASEDFUSIONOFTHERMALANDVISUALIMAGESINTHEPROPOSEDSYSTEM,THEMETHOD1NAMELY“DECOMPOSETHENQUOTIENTFUSELEVEL1”ANDTHEMETHOD2NAMELY“DECOMPOSERECONSTRUCTTHENQUOTIENTFUSELEVEL2”BOTHWORKONWAVELETTRANSFORMATIONSOFTHEVISUALANDTHERMALFACEIMAGESTHEWAVELETTRANSFORMISWELLSUITEDTOMANAGEDIFFERENTIMAGERESOLUTIONANDALLOWSTHEIMAGEDECOMPOSITIONINDIFFERENTKINDSOFCOEFFICIENTS,WHILEPRESERVINGTHEIMAGEINFORMATIONWITHOUTANYLOSSTHISAPPROACHISBASEDONADEFINITIONOFANILLUMINATIONINVARIANTSIGNATUREIMAGEWHICHENABLESANANALYTICGENERATIONOFTHEIMAGESPACEWITHVARYINGILLUMINATIONTHEQUOTIENTFUSEDIMAGESAREPASSEDTHROUGHPRINCIPALCOMPONENTANALYSISPCAFORDIMENSIONREDUCTIONANDTHENTHOSEIMAGESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONMLPTHEPERFORMANCESOFBOTHTHEMETHODSHAVEBEENEVALUATEDUSINGOTCBVSANDIRISDATABASESALLTHEDIFFERENTCLASSESHAVEBEENTESTEDSEPARATELY,AMONGTHEMTHEMAXIMUMRECOGNITIONRESULTIS100KEYWORDSDISCRETEWAVELETTRANSFORM,INVERSEDISCRETEWAVELETTRANSFORM,QUOTIENTFUSEDIMAGE,PRINCIPALCOMPONENTANALYSISPCA,MULTILAYERPERCEPTRONMLP,FACIALRECOGNITION,CLASSIFICATION,OTCBVSANDIRISDATABASE1INTRODUCTIONFACERECOGNITIONISAVITALPROBLEMINCOMPUTERVISIONTHOUGHFACERECOGNITIONSYSTEMSSHOWCONSIDERABLEIMPROVEMENTINSUCCESSIVECOMPETITIONS12,STILLITISCONSIDEREDUNSOLVED3FACERECOGNITIONNEEDSHIGHDEGREEOFACCURACYASITSMOSTAPPLICATIONSAREINPUBLICSECURITY,LAWENFORCEMENTANDCOMMERCE,SUCHASMUGSHOTDATABASEMATCHING,IDENTITYAUTHENTICATIONFORCREDITCARDORDRIVERLICENSE,ACCESSCONTROL,INFORMATIONSECURITYANDINTELLIGENTSURVEILLANCE4THEREAREALOTOFFACTORSLIKE,ILLUMINATIONVARIATION,POSEVARIATION,FACIALEXPRESSIONCHANGESETCWHICHAFFECTTHEFACERECOGNITIONPERFORMANCEAMONGALLTHESE,ILLUMINATIONPROBLEMHASRECEIVEDMUCHATTENTIONINRECENTYEARSQUOTIENTIMAGINGTECHNIQUEISONEOFTHESOLUTIONTOTHISPROBLEMTHISMETHODISSIMPLEANDSIGNIFICANTQUOTIENTIMAGEISANIMAGERATIOBETWEENATESTIMAGEANDALINEARCOMBINATIONOFTHREEIMAGESILLUMINATEDBYNONCOPLANARLIGHTS,DEPENDSONLYONTHEALBEDOINFORMATION,ANDTHEREFOREISILLUMINATIONFREE5THEQUOTIENTIMAGECANBECONSIDEREDASFUSEDQUOTIENTIMAGEASBOTHTHEVISUALANDITSCORRESPONDINGTHERMALIMAGESHAVEBEENUSEDTOGENERATEITTHEPROCESSINGSTEPSOFTHETWOMETHODSUSEDTOGENERATEQUOTIENTIMAGESARESHOWNINTHEFIG1AANDFIG1BINBOTHTHETWOMETHODSFORIMAGEDECOMPOSITIONPURPOSEDISCRETE2DWAVELETTRANSFORMHASBEENUSEDFORBOTHTHEVISUALANDTHERMALIMAGESBUTINMETHOD2FORRECONSTRUCTIONPURPOSETHEINVERSEDISCRETE2DWAVELETTRANSFORMHASBEENUSEDINMETHOD1,DECOMPOSITIONHASBEENDONEATLEVEL1TOGENERATETHEFUSEDQUOTIENTIMAGE,ALLTHECOEFFICIENTSOFTHEDECOMPOSEDIMAGEHAVEBEENUSEDINCASEOFMETHOD2,DISCRETE2DWAVELETTRANSFORMHASBEENUSEDATLEVEL2TODECOMPOSETHEVISUALANDTHERMALIMAGESBUTTOREGENERATETHEIMAGESONLYAPPROXIMATIONCOEFFICIENTSHAVEBEENUSEDWITHTHENEWRECONSTRUCTEDVISUALANDTHERMALIMAGESTHEQUOTIENTIMAGESHAVEBEENGENERATEDINTERMSOFDESIGNINGAFACIALRECOGNITIONSYSTEMWITHHIGHACCURACYLEVEL,THEMAINCRUCIALPOINTISTHECHOICEOFFEATUREEXTRACTORINTHISCONNECTION,PRINCIPALCOMPONENTANALYSISPCAHASBEENUSEDFORDIMENSIONREDUCTIONPURPOSEPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHEIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG2RECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUES25THEEIGENFACESWHICHARETHESETOFEIGENVECTORSISTHENUSEDTODESCRIBEFACEIMAGES6THESEEIGENFACESARETHENCLASSIFIEDUSINGMULTILAYERPERCEPTRONMLPDIFFERENTEXISTINGILLUMINATIONINVARIANTMETHODSHAVEBEENDISCUSSEDRESEARCHERSHAVEPROPOSEDDIFFERENTSOLUTIONSTOILLUMINATIONPROBLEM,WHICHINCLUDEINVARIANTFEATUREBASEDMETHOD7,3DLINEARILLUMINATIONSUBSPACEMETHOD8,LINEAROBJECTCLASS9,ILLUMINATIONANDPOSEMANIFOLD10,ILLUMINATIONCONES13,HARMONICSUBSPACE17,LAMBERTIANREFLECTANCEANDLINEARSUBSPACE14ANDINDIVIDUALPCACOMBININGTHESYNTHESIZEDIMAGES1516THEORETICALLYTHEILLUMINATIONCONEMETHODILLUSTRATEDTHATFACEIMAGESDUETOVARYINGLIGHTINGDIRECTIONSFORMANILLUMINATIONCONE1INTHISALGORITHM,BOTHSELFSHADOWANDCASTSHADOWWERECONSIDEREDANDITSEXPERIMENTALRESULTSOUTPERFORMEDMOSTEXISTINGMETHODSRAMAMOORTHI1719ANDBASRI2021INDEPENDENTLYDEVELOPEDTHESPHERICALHARMONICREPRESENTATIONTHISORIGINALREPRESENTATIONEXPLAINEDWHYTHEIMAGESOFANOBJECTUNDERDIFFERENTLIGHTINGCONDITIONSCANBEDESCRIBEDBYLOWDIMENSIONALSUBSPACEINSOMEPREVIOUSEMPIRICALEXPERIMENTS2324AMONGALLTHESEALGORITHMSTHEQUOTIENTIMAGEMETHODISSIMPLEANDPRACTICALLYUSEFULALSOQUOTIENTIMAGEBYSHASHUAANDRIKLINRAVIVISMAINLYDESIGNEDFORDEALINGWITHILLUMINATIONCHANGESINFACERECOGNITION262728JACOBSETAL30INTRODUCEDANOTHERCONCEPTOFQUOTIENTIMAGE,WHICHISTHERATIOOFTWOIMAGESJACOBSSMETHODCONSIDERSTHELAMBERTIANMODELWITHOUTSHADOWANDASSUMESTHESURFACEOFTHEOBJECTISSMOOTH5RETINEX,WHICHISACOMBINATIONOFTHEWORDSRETINAANDCORTEX,ISANALGORITHMTOMODELTHEHUMANVISUALSYSTEM22THOUGHITSORIGINALPURPOSEISFORCOLORCONSTANCY,BUTPERFORMSWELLASACONTRASTENHANCEMENTALGORITHMTOOAFAMOUSALGORITHMCALLEDFRANKLEMCCANNVARIATIONHASBEENINTRODUCEDBYMCCANNANDFRANKLE33ANDTHISALGORITHMWORKSBYOPERATINGONTHEIMAGEPIXELSINTHELOGDOMAINTHISINVOLVESFOURBASICSTEPSRATIO,PRODUCT,RESETANDAVERAGE29INTHISAPPROACHTHEMAINCONTRIBUTIONISTHEGENERATIONOFFUSEDQUOTIENTIMAGESI/JFROMBOTHTHECOEFFICIENTSOFVISUALIANDTHERMALJIMAGESINTHISPAPER,FIRSTTIMETHEAUTHORSHAVECONTRIBUTEDTHEQUOTIENTBASEDMULTIRESOLUTIONIMAGEFUSIONOFTHERMALANDVISUALIMAGESUSINGDAUBECHIESWAVELETTRANSFORMFORHUMANFACERECOGNITIONTHEPAPERISORGANIZEDASFOLLOWSSYSTEMOVERVIEWHASBEENGIVENINSECTION2WHICHINCLUDESTHEDESCRIPTIONOFVISUALANDTHERMALFACEIMAGES,MULTIRESOLUTIONANALYSIS,THEIMAGEDECOMPOSITIONANDRECONSTRUCTIONPROCESS,QUOTIENTIMAGINGMETHOD,PRINCIPALCOMPONENTANALYSISPCAANDARTIFICIALNEURALNETWORKSECTION3SHOWSANDANALYSESTHEEXPERIMENTALRESULTSUSINGOTCBVSANDIRISDATABASESTHECOMPARISONBETWEENDIFFERENTQUOTIENTIMAGINGMETHODSARESHOWNINSECTION4ANDFINALLYTHECONCLUSIONISMADEINSECTION52SYSTEMOVERVIEWHERE,ATECHNIQUEFORHUMANFACERECOGNITIONUSINGQUOTIENTIMAGESHASBEENPRESENTTHEBLOCKDIAGRAMOFTHESYSTEMISGIVENINFIG1AFORMETHOD1ANDINFIG1BFORMETHOD2ALLTHEPROCESSINGSTEPSTOGENERATEQUOTIENTIMAGESUSEDINTWOMETHODSARESHOWNINTHECORRESPONDINGBLOCKDIAGRAMSINCASEOFMETHOD1INFIRSTSTEPSINGLELEVELDECOMPOSITIONHASBEENDONEFORBOTHTHEVISUALANDTHERMALIMAGESQUOTIENTIMAGESAREGENERATEDFROMALLTHECOEFFICIENTSAPPROXIMATIONANDDETAILSCOEFFICIENTSOFDECOMPOSEDVISUALANDTHERMALIMAGESMETHOD2ISSLIGHTLYDIFFERENTFROMMETHOD1INTHEFIRSTSTEP,DECOMPOSITIONOFBOTHTHETHERMALANDVISUALIMAGESUPTOLEVEL2HASBEENDONEUSINGDAUBECHIESWAVELETTHEREASONBEHINDUSINGLEVEL2DECOMPOSITIONISTHATTHEHIGHERTHEDECOMPOSITIONLEVELSARETHEMOREADVANTAGEOUSBECAUSETHENUMBEROFHIGHERANDLOWERFREQUENCYSUBBANDSWILLINCREASEINTHISCONNECTIONTHESIZEOFTHEIMAGEWILLDECREASEANDTHUSTHEPROCESSINGSPEEDWILLINCREASE38THENTHEIMAGESARERECONSTRUCTEDFROMTHECORRESPONDINGAPPROXIMATIONCOEFFICIENTSINCASEOFBOTHVISUALANDTHERMALIMAGESTHENQUOTIENTIMAGESAREGENERATEDWITHTHESECOEFFICIENTSTHESETRANSFORMEDIMAGESARESEPARATEDINTOTWOGROUPSNAMELYTRAININGSETANDTESTINGSETTHEPCAISCOMPUTEDUSINGTRAININGIMAGESALLTHETRAININGANDTESTINGIMAGESAREPROJECTEDINTOTHECREATEDEIGENSPACEANDNAMEDASQUOTIENTFUSEDEIGENFACESONCETHESECONVERSIONSAREDONETHENEXTTASKISTOUSEMULTILAYERPERCEPTRONMLPTOCLASSIFYTHEMAMULTILAYERFEEDFORWARDNETWORKISUSEDFORCLASSIFICATION21MULTIRESOLUTIONANALYSISINCOMPUTERVISION,ITISDIFFICULTTOANALYZETHEINFORMATIONCONTENTOFANIMAGEDIRECTLYFROMTHEGRAYLEVELINTENSITYOFTHEIMAGEPIXELSINDEED,THISVALUEDEPENDSUPONTHELIGHTINGCONDITIONSGENERALLY,THESTRUCTURESWEWANTTORECOGNIZEHAVEVERYDIFFERENTSIZESHENCE,ITISNOTPOSSIBLETODEFINEAPRIORIANOPTIMALRESOLUTIONFORANALYZINGIMAGESFUSEDQUOTIENTVISUALIMAGEDECOMPOSEDVISUALIMAGEWITHLEVEL1DWTIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG3FIG1BLOCKDIAGRAMOFTHESYSTEMPRESENTEDHEREFORAMETHOD1ANDBMETHOD2WAVELETDECOMPOSITIONISTHEMOSTWIDELYUSEDMULTIRESOLUTIONTECHNIQUEINIMAGEPROCESSING34INTHISWORK,2DDISCRETEWAVELETTRANSFORMHASBEENUSEDTOEXTRACTMULTIPLESUBBANDFACEIMAGESTHESESUBBANDIMAGESCONTAINAPPROXIMATIONCOEFFICIENTSMATRIXANDDETAILSCOEFFICIENTSMATRICESLIKEHORIZONTAL,VERTICALANDDIAGONALCOEFFICIENTSOFFACESATVARIOUSSCALESONELEVELWAVELETDECOMPOSITIONOFAFACEIMAGEISSHOWNINFIG2FIG2SAMPLEONELEVELWAVELETDECOMPOSEDIMAGEINFIG2,FORBOTHTHEMETHODSA1ISTHEAPPROXIMATIONCOEFFICIENT,V1,H1ANDD1ARETHEVERTICAL,HORIZONTALANDDIAGONALDETAILSCOEFFICIENTSRESPECTIVELYSINGLELEVELDECOMPOSITIONISUSEDINBOTHVISUALANDTHERMALIMAGESFORMETHOD1AN80100PIXELSIMAGEISTAKENASINPUTANDAFTERDECOMPOSITIONFOUR4050PIXELSRESOLUTIONSUBBANDIMAGESA1,H1,V1ANDD1AREOBTAINEDINCASEOFMETHOD2,BOTHTHEINPUTIMAGESVISUALANDTHERMALAREOFSIZE80100AFTERSINGLELEVELDECOMPOSITION,ALLTHEGENERATEDCOEFFICIENTSA1,H1,V1ANDD1AREOFSIZE4050AGAINDECOMPOSITIONATLEVEL2HASBEENAPPLIEDONLYINAPPROXIMATIONCOEFFICIENTA1ANDAFTERTHAT,USINGONLYAPPROXIMATIONCOEFFICIENT,GETTINGAFTERLEVEL2DECOMPOSITION,THEQUOTIENTIMAGESOFSIZE4050HASBEENGENERATED22DAUBECHIESWAVELETTRANSFORMINTHISWORKDAUBECHIESDB1WAVELETHASBEENUSEDTODECOMPOSETHEIMAGESASWELLASTORECONSTRUCTTHEIMAGESALSODAUBECHIESDB1WAVELETISTHESAMEASHAARWAVELETSOTHEDISCUSSIONOFTHEHAARWAVELETISESSENTIALTOUNDERSTANDTHECONCEPTOFDAUBECHIESDB1WAVELETINMATHEMATICS,THEHAARWAVELETISACERTAINSEQUENCEOFFUNCTIONSTHISSEQUENCEWASPROPOSEDIN1909BYALFRDHAARHAARUSEDTHESEFUNCTIONSTOGIVEANEXAMPLEOFACOUNTABLEORTHONORMALSYSTEMFORTHESPACEOFSQUAREINTEGRABLEFUNCTIONSONTHEREALLINE18THEHAARWAVELETSMOTHERWAVELETFUNCTIONTCANBEDESCRIBEDAS101/2,11/21,0TTTOTHERWISE1ANDITSSCALINGFUNCTIONTCANBEDESCRIBEDAS101,0TTOTHERWISE2DAUBECHIESWAVELETTRANSFORMHASBEENUSEDINTHISWORKDAUBECHIESWAVELETSAREAFAMILYOFORTHOGONALWAVELETSA1V1H1D1IJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG4DEFININGADISCRETEWAVELETTRANSFORMANDCHARACTERIZEDBYAMAXIMALNUMBEROFVANISHINGMOMENTSFORSOMEGIVENSUPPORTTHISKINDOF2DIMENSIONALDISCRETEWAVELETTRANSFORMDWTAIMSTODECOMPOSETHEIMAGEINTOAPPROXIMATIONCOEFFICIENTSCAANDDETAILEDCOEFFICIENTSCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALOBTAINEDBYWAVELETDECOMPOSITIONOFTHEINPUTIMAGEXTHE2DIMENSIONALDISCRETEWAVELETTRANSFORMDWTFUNCTIONSUSEDINMATLAB7ARESHOWNINEQUATION3ANDEQUATION4CA,CH,CV,CDDWT2X,WNAME3CA,CH,CV,CDDWT2X,LO_D,HI_D4INEQ3,WNAMEISTHENAMEOFTHEWAVELETUSEDFORDECOMPOSITIONINTHISWORKDB1HASBEENUSEDINCASEOFWNAMEEQ4LO_DDECOMPOSITIONLOWPASSFILTERANDHI_DDECOMPOSITIONHIGHPASSFILTERWAVELETDECOMPOSITIONFILTERSTHISKINDOFTWODIMENSIONALDWTLEADSTOADECOMPOSITIONOFAPPROXIMATIONCOEFFICIENTSATLEVELJINFOURCOMPONENTSTHEAPPROXIMATIONATLEVELJ1,ANDTHEDETAILSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,ANDDIAGONALTHEFIG3DESCRIBESTHEALGORITHMICBASICDECOMPOSITIONSTEPSFORIMAGEWHERE,ABLOCKWITHADOWNARROWINDICATESDOWNSAMPLINGOFCOLUMNSANDROWSANDCA,CH,CVANDCDARETHECOEFFICIENTVECTORS373839CONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFDWTIDWTWEHAVERECONSTRUCTEDTHEIMAGESBASEDONTHEAPPROXIMATIONCOEFFICIENTMATRIXCAFINALLYTHERECONSTRUCTEDIMAGEISUSEDASTHEINPUTTOPCAFORDIMENSIONREDUCTIONTHE2DIMENSIONALINVERSEDISCRETEWAVELETTRANSFORMIDWTFUNCTIONSUSEDINMATLAB7ARESHOWNINEQUATION5ANDEQUATION6XIDWT2CA,CH,CV,CD,WNAME5XIDWT2CA,CH,CV,CD,LO_R,HI_R6INVERSEDISCRETEWAVELETTRANSFORMIDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYINTHEFIG4WEHAVESHOWNTHEALGORITHMICBASICRECONSTRUCTIONSTEPSFORANIMAGERESPECTIVELYTHEABOVECONCEPTSOFDISCRETEWAVELETTRANSFORMDWTFUNCTIONANDINVERSEDISCRETEWAVELETTRANSFORMIDWTFUNCTIONHAVEBEENUSEDFROMWAVELETTOOLBOXOFMATLAB7FIG3STEPSFORDECOMPOSITIONOFANIMAGEFORMETHOD1ANDMETHOD2FIG4STEPSFORRECONSTRUCTIONOFANIMAGEFORMETHOD223THEQUOTIENTFUSEDIMAGEOFTHERMALANDVISUALIMAGEIFTWOOBJECTSAREAANDB,WEDEFINETHEQUOTIENTIMAGEQBYTHERATIOOFTHEIRALBEDOFUNCTIONSAANDBCLEARLY,QISILLUMINATIONINVARIANTINTHEABSENCEOFANYDIRECTACCESSTOTHEALBEDOFUNCTIONS,ITHASBEENSHOWNTHATQCANNEVERTHELESSBERECOVERED,ANALYTICALLY,GIVENACOLUMNSCAJO_DI_D11ROWSO_DI_D22COLUMNSCAJ1CHJ1O_DI_D22COLUMNSCOLUMNSCVJ1HORIZONTALVERTICALCDROWSHORIZONTALDIAGONALAJ1ROWS1ROWSI_RO_RKEEPVERTICAL2HO_R2COLUMNSCOLUMNSCOLUMNSCOLUMNS22I_RO_RI_RCAJ1CHJ1CVJ1CDJ1WHERE,21O_RI_RUPSAMPLECOLUMNSINSERTZEROSATODDINDEXEDCOLUMNSUPSAMPLEROWSINSERTZEROSATODDINDEXEDROWSRECONSTRUCTIONLOWPASSFILTERDECOMPOSITIONHIGHPASSFILTERIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG5BOOTSTRAPSETOFIMAGESONCEQISRECOVERED,THEENTIREIMAGESPACEUNDERVARYINGLIGHTINGCONDITIONSOFOBJECTACANBEGENERATEDBYQANDTHREEIMAGESOFOBJECTBTHEDETAILSAREGIVENBELOWLET,STARTWITHTHECASEN1,IE,THEREISASINGLEOBJECT2IMAGESINTHEBOOTSTRAPSETLETTHEALBEDOFUNCTIONOFTHATOBJECTABEDENOTEDBYA,ANDLETTHETWOIMAGESBEDENOTEDBYA1,A2THEREFORE,AJANTSJ,WHERE,J1,2LETYBEANOTHEROBJECTOFTHECLASSWITHALBEDOYANDLETYSBEANIMAGEOFYILLUMINATEDBYSOMELIGHTINGCONDITIONS,IE,YSYNTSTHEQUOTIENTIMAGEQYOFOBJECTYAGAINSTOBJECTAISDEFINEDBY,YYAUVUVUVQ7WHEREU,VRANGEOVERTHEIMAGETHUS,THEIMAGEQYDEPENDSONLYONTHERELATIVESURFACETEXTUREINFORMATION,ANDTHUSISINDEPENDENTOFILLUMINATION40THEQUOTIENTIMAGEUSEDINTHISEXPERIMENTISTHEQUOTIENTOFTHEVISUALANDTHERMALIMAGEOFANOBJECTLET,THEVISUALIMAGEBEIANDTHETHERMALIMAGEBEJ,THENWECANCONSIDERTHEQUOTIENTIMAGECASFI/FJTHEABOVEMENTIONEDQUOTIENTIMAGINGTECHNIQUEISSAMEFORBOTHTHEMETHODSMETHOD1ANDMETHOD2BUTFIANDFJAREDIFFERENTFORMETHOD1ANDMETHOD2FORMETHOD1,FIRSTBOTHTHEVISUALANDTHERMALIMAGESHAVEBEENDECOMPOSEDATLEVEL1THEQUOTIENTIMAGESHAVEBEENGENERATEDUSINGALLTHEFOURCOEFFICIENTSOFTHEDECOMPOSEDIMAGESAPPROXIMATIONCOEFFICIENTANDDETAILSCOEFFICIENTSINTHREEORIENTATIONSHORIZONTAL,VERTICAL,DIAGONALINCASEOFMETHOD2,FIRSTTHEVISUALANDTHERMALIMAGESAREDECOMPOSEDATLEVEL2ANDAFTERTHATBOTHTHEIMAGESARERECONSTRUCTEDUSINGTHEAPPROXIMATECOEFFICIENTSTHESEIMAGESAREDECOMPOSEDANDRECONSTRUCTEDUSINGWAVELETDECOMPOSITIONANDRECONSTRUCTIONFUNCTIONFINALLYTHEQUOTIENTIMAGEISGENERATEDFROMBOTHTHERECONSTRUCTEDVISUALANDTHERMALFUNCTIONS24IMAGEFUSIONRULESATTHETIMEOFGENERATINGFUSEDIMAGESOFCOEFFICIENTSAPPROXIMATEANDDETAILS,THEABSOLUTEMAXIMUMOFTHERMALANDVISUALIMAGESWASSELECTEDTHEFUSIONMETHODUSEDTOGENERATEFUSEDIMAGEOFWAVELETTOOLBOXISPRESENTINTHEEQ8DABSTABSVCTDVD8WHERE,DISTHEABSOLUTEMAXIMUMMATRIXOFTTHERMALIMAGEANDVVISUALIMAGE,ABSTANDABSVARETHEABSOLUTEMATRICESOFTANDVANDCISTHEGENERATEDFUSEDIMAGEOFTANDVNOWATTHETIMETOFINDTHEABSOLUTEVALUEOFCORRESPONDINGTHERMALANDVISUALCOEFFICIENTSITWILLCALCULATETHEINTENSITYOFTHEEACHPIXELINCASEOFEQUATION8,ITWILLCHECKTHAT,XYXYTB,THENFORTHEFUSEDIMAGEOFCOEFFICIENTITWILLDOTHEFOLLOWINGOPERATIONGIVENINEQ9XYXYXYFTV9WHEREFXYISTHEPIXELVALUEOFTHEFUSEDIMAGECANDTHEMETHODSHOWNINEQ9ISTHEPROCESSTOCALCULATETHEPIXELVALUEFORFUSEDIMAGEOFTANDV25COMPARISONBETWEENQIANDSQIINTHISSECTION,ACOMPARISONANALYSISOFQUOTIENTIMAGEQIANDSELFQUOTIENTIMAGESQIHASBEENPRESENTEDACCORDINGTOTHECONCEPTPROPOSEDBYHAITAOWANG,STANZLIANDYANGSHENGWANG25SQIISDEFINEDASTHERATIOOFTHEINPUTIMAGEANDITSSMOOTHVERSIONSTHESELFQUOTIENTIMAGEQOFIMAGEICANBEEXPRESSEDASIIQIFI10WHEREISTHESMOOTHEDVERSIONOFIFISTHESMOOTHINGKERNELWECANCONSIDERTHESQIASONEKINDOFQIWHICHISDERIVEDFROMTHESAMEIMAGEIITSELFTHEDEFINITIONOFTHEQUOTIENTIMAGEPROVIDESANINVARIANTREPRESENTATIONOFFACEIMAGESUNDERDIFFERENTLIGHTINGCONDITIONS26PRINCIPALCOMPONENTANALYSISTHEPRINCIPALCOMPONENTANALYSISPCA41,42,43USESTHEENTIREIMAGETOGENERATEASETOFFEATURESANDDOESNOTREQUIRETHELOCATIONOFINDIVIDUALFEATUREPOINTSWITHINTHEIMAGEWEHAVEIMPLEMENTEDTHEPCATRANSFORMASAREDUCEDFEATUREEXTRACTORINOURFACERECOGNITIONSYSTEMHERE,EACHOFTHEQUOTIENTFUSEDFACEIMAGESAREPROJECTEDINTOTHEEIGENSPACECREATEDBYTHEEIGENVECTORSOFTHECOVARIANCEMATRIXOFALLTHETRAININGIMAGESREPRESENTEDASCOLUMNVECTORHERE,WEHAVETAKENTHENUMBEROFEIGENVECTORSINTHEEIGENSPACEAS40,BECAUSEEIGENVALUESFOROTHEREIGENVECTORSARENEGLIGIBLEINCOMPARISONTOTHELARGESTEIGENVALUES44454627ANNUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT“INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTIJCSIINTERNATIONALJOURNALOFCOMPUTERSCIENCEISSUES,VOL7,ISSUE3,MAY2010WWWIJCSIORG6HISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENAUSINGNEURALNETWORKSTHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS471225353EXPERIMENTSANDDISCUSSIONEXPERIMENTSAREPERFORMEDTOEVALUATEQUOTIENTIMAGEQIFORFACERECOGNITION,USINGIRISDATABASETHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYASTHEBOTHRECONSTRUCTEDVISUALANDTHERMALIMAGESHASBEENUSEDTOGENERATEQUOTIENTFUSEDIMAGES,SOFIRSTOFALLORIGINALIMAGESARECROPPEDMANUALLY31OTCBVSDATABASETHEEXPERIMENTSWEREPERFORMEDONTHEFACEDATABASEWHICHISOBJECTTRACKINGANDCLASSIFICATIONBEYONDVISIBLESPECTRUMOTCBVSBENCHMARKDATABASECONTAININGASETOFTHERMALANDVISUALFACEIMAGESTHISISAPUBLICLYAVAILABLEBENCHMARKDATASETFORTESTINGANDEVALUATINGNOVELANDSTATEOFTHEARTCOMPUTERVISIONALGORITHMSTHEBENCHMARKCONTAINSVIDEOSANDIMAGESRECORDEDINANDBEYONDTHEVISIBLESPECTRUMITCONTAINSDIFFERENTSETSOFDATALIKEOSUTHERMALPEDESTRIANDATABASE,IRISTHERMAL/VISIBLEFACEDATABASE,OSUCOLORTHERMALDATABASE,TERRAVICFACIALIRDATABASE,TERRAVICWEAPONIRDATABASEANDCBSRNIRFACEDATASETAMONGALLOFTHESEDIFFERENTDATASETS,MAINLY,VISUALIMAGESFROMIRISTHERMAL/VISIBLEFACEDATASETHAVEBEENUSEDINTHISDATASET,THEREARE2000IMAGESOFVISUALAND2000THERMALIMAGESOF16DIFFERENTPERSONSINCASEOF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论